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Introduction to ggplot2



What is ggplot2 ?
ggplot2 is a powerful R package, implemented by Hadley Wickham, for
producing nice graphs
One of the strengths of R is that it’s more than just a programming  
language — it also has thousands of packages written and contributed  
by independent developers. One of these packages, ggplot2, is  
tremendously popular and offers a new way of creating insightful  
graphics using R.
Much of the ggplot2 philosophy is based on the so-called “grammar of  
graphics,” a theoretically sound way of describing all the components  
that go into a graphical plot. You don’t need to know anything about  
the grammar of graphics to use ggplot2 effectively, but now you know  
where its name comes from.



Grammar of graphics, and ggplot and ggplot2 are implementations of 
that grammar of graphics. The basic idea here is to separate what is 
graphed. That is, the actual data behind it, from how it is graphed

Structure of ggplot2 Commands



Installing and Loading ggplot2
Looking At Layers
The basic concept of a ggplot2 graphic is that you combine different elements into  
layers. Each layer of a ggplot2 graphic contains information about the following:
• The data that you want to plot: For ggplot(), this must be a data frame.
• A mapping from the data to your plot: This usually is as simple as telling  

ggplot() what goes on the x-axis and what goes on the y-axis. (In the “Mapping  
data to plot aesthetics” section, later in this part, we explain how to use
the aes() function to set up the mapping.)

• A geometric object, or geom in ggplot terminology: The geom defines the
overall look of the layer (for example, whether the plot is made up of bars,
points, or lines).

• A statistical summary, called a stat in ggplot: This describes how you want  
the data to be summarized (for example, binning for histograms, or smoothing  
to draw regression lines).



Now, ggplot2 also include something called qplot,
which stands for quick plot. These are commands that are 
quicker to work with. They're easy, they're fast, but they do 
have less power and control



1.install and load the ggplot2 package and then take a
first look at layers, the building blocks of the ggplot2 graphics.
2.you define the data, geoms, and stats that make up a layer,  
and use these to create some plots.
3.you take full control over your graphics by adding facets and
scales as well as controlling other plot options, such as adding
labels and titles.



Now, I want to give you a few other resources for ggplot2.

1. One is the actual ggplot2 page on tidyverse.org, which 
explains a little bit about how to install it and gives a link to 
some other information.

1. One thing you might want to look at is this page, which is 
ggplot2 extensions.

https://exts.ggplot2.tidyverse.org/gallery/

https://ggplot2.tidyverse.org/

https://exts.ggplot2.tidyverse.org/gallery/
https://ggplot2.tidyverse.org/


2. One thing you might want to look at is this page, which is 
ggplot2 extensions.

https://exts.ggplot2.tidyverse.org/gallery/

These are other packages that build onto and connect with the 
functionality of ggplot. They allow you to do some impressive 
things, like animations or simple things, like modifying where the 
labels appear. There are so many possibilities, and obviously, this 
is where you can see the power of ggplot because it lets you 
specify things at such a micro level. It enables enormous 
creativity in the exploration and the presentation of your data.

https://exts.ggplot2.tidyverse.org/gallery/


Finally, I want you to be aware of the cheat sheets that are available 
through our studio because the people who have developed 
ggplot2, Hadley Wickham in particular, works at studio his is a 
downloadable PDF, which can give you a list of commands including the 
over 40 different geometric objects and how you can specify some of 
the commands for working in ggplot. So these are resources that are 
available to you

https://github.com/rstudio/cheatsheets/blob/master/data-visualization-2.1.pdf

https://github.com/rstudio/cheatsheets/blob/master/data-visualization-2.1.pdf

https://github.com/rstudio/cheatsheets/blob/master/data-visualization-2.1.pdf
https://github.com/rstudio/cheatsheets/blob/master/data-visualization-2.1.pdf


Install.packages

Each R package is hosted at http://cran.r-project.org, the same website
that hosts R.

However, you don’t need to visit the website to download an R package;  
you can download packages straight from R’s command line. Here’s how:

1. Open RStudio.
2. Make sure you are connected to the Internet.
3. Run install.packages(“ggplot2") at the command line (console)

Or using the menu bar –Tools-Install Packages  
(easy and fast way to install packages)

https://cran.r-project.org/


Installing Packages:

install.packages("package name")

Open R and type the following into the command line:

library(package name)

Loading Packages:
Installing a package doesn’t immediately place its functions at your fingertips. It  
just places them on your computer. To use an R package, you next have to load it  
in your R session with the command:

Updating R Packages:
For example if you already have ggplot2, reshape2, and dplyr on your computer,
it’d be a good idea to check for updates before you use them:

update.packages(c("ggplot2", "reshape2", "dplyr"))



Library
Installing a package doesn’t place its functions at your  
fingertips just yet: it simply places them in your hard drive. To  
use an R package, you next have to load it in your R session  
with the command library("ggplot2"). If you would like to load  
a different package, replace ggplot2 with your package name in  
the code.

If you could not manage to download ggplot2 package . We can  
use Plot() instead.



Installation:
# The easiest way to get ggplot2 is to install 
the whole tidyverse:
install.packages("tidyverse") 
# Alternatively, install just ggplot2:
install.packages("ggplot2") 
# Or the development version from GitHub: 
# install.packages("devtools")
devtools::install_github("tidyverse/ggplot2")

https://rdrr.io/r/utils/install.packages.html
https://rdrr.io/r/utils/install.packages.html
https://devtools.r-lib.org/reference/remote-reexports.html


How to install a package for the first time with the install.packages()  
function and to load the package at the start of each R session
with the library() function.

To install the ggplot2 package, use the following:

> install.packages(“ggplot2”)

And then to load it, use the following:

> library(“ggplot2”)



More Data Visualization Refences for R 

If you want to get started with visualizations in R, take some time to study the ggplot2 package. One of 
the (if not the) most famous packages in R for creating graphs and plots. ggplot2 is makes intensive use of 
the grammar of graphics, and as a result is very intuitive in usage (you’re continuously building part of 
your graphs so it’s a bit like playing with lego). There are tons of resources to get your started such as 
this
https://www.datacamp.com/courses/data-visualization-with-ggplot2-1?tap_a=5644-dce66f&tap_s=14201-
e863d5

Besides ggplot2 there are multiple other packages that allow you to create highly engaging graphics and that 
have good learning resources to get you up to speed. Some of our favourites are:
• ggvis for interactive web graphics 
http://ggvis.rstudio.com/
• googleVis to interface with google charts. 
https://developers.google.com/chart/interactive/docs/gallery
• Plotly for R
https://plotly.com/r/

https://cran.r-project.org/web/packages/ggplot2
http://www.springer.com/gp/book/9780387245447
https://www.datacamp.com/courses/data-visualization-with-ggplot2-1?tap_a=5644-dce66f&tap_s=14201-e863d5
http://ggvis.rstudio.com/
http://ggvis.rstudio.com/
https://github.com/mages/googleVis
https://developers.google.com/chart/interactive/docs/gallery
https://plot.ly/r/
https://plotly.com/r/


Using Colors in R



you can see that we've got a lot of different names, and 
they're just alphabetical.

R uses color names for 657 different names, there are 
actually just about 500 unique colors,
and they're arranged alphabetically.

?colors

Let's get a list of the color names

colors()



Or we can use a resource that I've compiled and it's available for free on the 
web at this address

https://datalab.cc/rcolors

Let me show you what that looks like. What this website has is all the different 
ways that you can identify or call on colors in R, and it's available right here as an 
embedded spreadsheet where you see the color samples, and the numbers, and 
so on and so forth, scroll across. You can open this in your web browser in Google 
Sheets, you can download it as an Excel file or download it as a PDF, and that's 
just free and available for anyone

https://datalab.cc/rcolors


Exercise (1):  Let's make a bar plot with different colors

# Color names
barplot(x, col = "skyblue")  # skyblue
barplot(x, col = "linen")  # linen

# RGB triplets (0.00-1.00)
barplot(x, col = rgb(.52, .80, .92))  # skyblue
barplot(x, col = rgb(.98, .94, .90))  # linen

# RGB triplets (0-255)
barplot(x, col = rgb(135, 206, 235, max = 255))  # skyblue
barplot(x, col = rgb(250, 240, 230, max = 255))  # linen

# RGB hexcodes
barplot(x, col = "#87CEEB")  # skyblue
barplot(x, col = "#FAF0E6")  # linen

# Index numbers
barplot(x, col = colors() [589])  # skyblue
barplot(x, col = colors() [449])  # linen

library("ggplot2")
# MULTIPLE COLORS 
# Can specify several colors in a vector, which will cycle
barplot(x, col = c("skyblue", "linen"))
barplot(x, col = c("#FAF0E6", "#87CEEB"))



Using color palettes



#INSTALL AND LOAD PACKAGES  

# Load base packages manually
# library(datasets)  # For example datasets

# Install pacman ("package manager") if needed
if (!require("pacman")) install.packages("pacman")

# pacman must already be installed; then load contributed
# packages (including pacman) with pacman
pacman::p_load(datasets, pacman, rio, tidyverse)

# datasets: for demonstration purposes
# pacman: for loading/unloading packages
# rio: for importing data
# tidyverse: for so many reasons



# LOAD DATA  

x <- c(24, 13, 7, 5, 3, 2)  # Sample data
barplot(x)  # Default barplot

# BUILT-IN COLOR PALETTES  

?palette  # Info on palettes
palette() # See current palette

barplot(x, col = 1:6)                # Use current palette
barplot(x, col = rainbow(6))         # Rainbow colors
barplot(x, col = heat.colors(6))     # Yellow through red
barplot(x, col = terrain.colors(6))  # Gray through green
barplot(x, col = topo.colors(6))     # Purple through tan
barplot(x, col = cm.colors(6))       # Pinks and blues

Exercise (1): Let's make a bar plot with different color palettes



We have more choices of colors packages  



# RCOLORBREWER package

browseURL("http://colorbrewer.org/")
p_load(RColorBrewer)
?RColorBrewer
display.brewer.all()  # Show all palettes

# SEQUENTIAL PALETTES: Blues, BuGn, BuPu, GnBu, Greens,
# Greys, Oranges, OrRd, PuBu, PuBuGn, PuRd, Purples, RdPu,
# Reds, YlGn, YlGnBu, YlOrBr, YlOrRd
display.brewer.pal(7,"BuPu")

# DIVERGING PALETTES: BrBG, PiYG, PRGn, PuOr, RdBu, RdGy,
# RdYlBu, RdYlGn, Spectral
display.brewer.pal(5,"BrBG")

# QUALITATIVE PALETTES: Accent (8), Dark2 (8), Paired (12),
# Pastel1 (9), Pastel2 (8), Set1 (9), Set2 (8), Set3 (12)
# (All sets require at least three groups)
display.brewer.pal(4,"Paired")

barplot(x, col = 1:6)                   # Default palette
barplot(x, col = brewer.pal(6,"BuPu"))  # Sequential
barplot(x, col = brewer.pal(6,"PuOr"))  # Diverging
barplot(x, col = brewer.pal(6,"Set3"))  # Qualitative



# WESANDERSON 

browseURL("https://github.com/karthik/wesanderson")
p_load(wesanderson)
?wesanderson
names(wes_palettes)

barplot(x, col = wes_palette("BottleRocket1"))
barplot(x, col = wes_palette("Zissou1"))
barplot(x, col = wes_palette("GrandBudapest2"))
barplot(x, col = wes_palette("IsleofDogs1"))

# OTHER PALETTE PACKAGES  

# The viridis color palettes
browseURL("http://bit.ly/2tFEqKe")  

# Scientific Journal and Sci-Fi Themed Color Palettes
browseURL("http://bit.ly/2NXxIpT")



# CUSTOM PALETTES  - You can have you customise colors

# Can specify colors with names
palette1 <- c("lightcyan", "orange2", "salmon", "tan")

# Can specify colors with hex codes (or other methods)
palette2 <- c("#D2B48C", "#FA8072", "#EE9A00", "#E0FFFF")

barplot(x, col = palette1)
barplot(x, col = palette2)



In this lecture will teach you how to visualize your data using ggplot2. R 
has several systems for making graphs, but ggplot2 is one of the most 
elegant and most versatile. ggplot2 implements the grammar of 
graphics, a coherent system for describing and building graphs. 

With ggplot2, you can do more faster by learning one system and 
applying it in many places.

If you’d like to learn more about the theoretical underpinnings of ggplot2 before you start, I’d 
recommend reading “A Layered Grammar of Graphics”.



You only need to install a package once, but you need to reload it every time you 
start a new session.

That one line of code loads the core tidyverse, packages that you will use in 
almost every data analysis. It also tells you which functions from the tidyverse
conflict with functions in base R (or from other packages you might have 
loaded).

R for Data Science by Garrett Grolemund, Hadley Wickham Search... If you run 
this code and get the error message “there is no package called ‘tidyverse’,” 
you’ll need to first install it, then run library() once again:

install.packages("tidyverse")
library(tidyverse)

Prerequisites



Create plots with {ggplot2}
In the following sections we will show how to draw the 
following plots:
•scatter plot
•line plot
•histogram
•density plot
•boxplot
•barplot



Using Geoms and Stats

To create a ggplot2 graphic, you have to  
explicitly tell the function what’s in each of  
the components of the layer. In other words,  
you have to tell the ggplot() function your  
data, the mapping between your data and  
the geom, and then either a geom or a stat.



Data

library(ggplot2) 
dat <- ggplot2::mpg

To illustrate plots with the {ggplot2} package we will use the mpg dataset available in the 
package. The dataset contains observations collected by the US Environmental Protection 
Agency on fuel economy from 1999 to 2008 for 38 popular models of cars (run ?mpg for more 
information about the data):

This dataset contains a subset of the 
fuel economy data that the EPA makes 
available on http://fueleconomy.gov. It 
contains only models which had a new 
release every year between 1999 and 
2008 - this was used as a proxy for the 
popularity of the car.

http://fueleconomy.gov/


Hint: If we need to be explicit about where a function (or dataset) 
comes from, we’ll use the special form package::function().  

First Steps
Let’s use our first graph to answer a question: 
Do cars with big engines use more fuel than cars with small engines? 

You probably already have an answer but try to make your answer 
precise. 

What does the relationship between engine size and fuel efficiency 
look like? Is it positive? Negative? Linear? Nonlinear?



You can test your answer with the mpg data frame found in 
ggplot2 (ggplot2::mpg). 

A data frame is a rectangular collection of variables (in the 
columns) and observations (in the rows). 

Mpg contains observations collected by the US Environment 
Protection Agency on 38 models of cars:

The mpg Data Frame



> mpg 
# A tibble: 234 × 11 
   manufacturer      model displ  year   cyl      trans   drv   cty   hwy 
          <chr>      <chr> <dbl> <int> <int>      <chr> <chr> <int> <int> 
1          audi         a4   1.8  1999     4   auto(l5)     f    18    29 
2          audi         a4   1.8  1999     4 manual(m5)     f    21    29 
3          audi         a4   2.0  2008     4 manual(m6)     f    20    31 
4          audi         a4   2.0  2008     4   auto(av)     f    21    30 
5          audi         a4   2.8  1999     6   auto(l5)     f    16    26 
6          audi         a4   2.8  1999     6 manual(m5)     f    18    26 
7          audi         a4   3.1  2008     6   auto(av)     f    18    27 
8          audi a4 quattro   1.8  1999     4 manual(m5)     4    18    26 
9          audi a4 quattro   1.8  1999     4   auto(l5)     4    16    25 
10         audi a4 quattro   2.0  2008     4 manual(m6)     4    20    28 
# ... with 224 more rows, and 2 more variables: fl <chr>, class <chr> 
>  

 

>  
 

 



Among the variables in mpg are:
◦ displ, a car’s engine size, in liters.
◦ hwy, a car’s fuel efficiency on the highway, in miles per gallon (mpg). A

car with a low fuel efficiency consumes more fuel than a car with a
high fuel efficiency when they travel the same distance.

To plot mpg, run this code to put displ on the x-axis and hwy on the y-
axis:

ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy))



1. Run ggplot(data = mpg). What do you see?
2. How many rows are in mtcars? How many columns?
3. What does the drv variable describe? Read the help for 
?mpg to find out.
4. Make a scatterplot of hwy versus cyl.
5. What happens if you make a scatterplot of class versus 
drv? Why is the plot not useful?

Exercises (1):



The plot shows a negative relationship between engine size 
(displ) and fuel efficiency (hwy). In other words, cars with big 
engines use more fuel. Does this confirm or refute your 
hypothesis about fuel efficiency and engine size?

A Graphing Template
Let’s turn this code into a reusable template for making graphs 
with ggplot2. To make a graph, replace the bracketed sections in 
the following code with a dataset, a geom function, or a 
collection of mappings:



ggplot(data = <DATA>) + <GEOM_FUNCTION>(mapping = 
aes(<MAPPINGS>))

We will show you how to complete and extend this template 
to make different types of graphs. We will begin with the 
<MAPPINGS> component.



Aesthetic Mappings



Aesthetic Mappings
You can add a third variable, like class, to a 
two-dimensional scatterplot by mapping it to 
an aesthetic.
You can convey information about your data by 
mapping the aesthetics in your plot to the 
variables in your dataset. For example, you can 
map the colors of your points to the class 
variable to reveal the class of each car:



ggplot(mpg) + # data
aes(x = displ, y = hwy) + # variables
geom_point() # type of plot

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point()

Or

Scatter plot



Line plot

Line plots, particularly useful in time series or finance, can be created 
similarly but by using geom_line():
ggplot(mpg) +
aes(x = displ, y = hwy) +
geom_line()

https://statsandr.com/blog/descriptive-statistics-in-r/


Combination of line and points
An advantage of {ggplot2} is the ability to combine several types of plots and its flexibility in designing it. For instance, we can 
add a line to a scatter plot by simply adding a layer to the initial scatter plot:

Combination 
of line and 
points

ggplot(mpg) +
aes(x = displ, y = hwy) +
geom_point() +
geom_line() # add line



ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy, 
color = class))



In the preceding example, we mapped class to the color aesthetic, but 
we could have mapped class to the size aesthetic in the same way. In 
this case, the exact size of each point would reveal its class affiliation. 
We get a warning here, because mapping an unordered variable (class) 
to an ordered aesthetic (size) is not a good idea:

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, size = class))
#> Warning: Using size for a discrete variable is not advised.





Or we could have mapped class to the alpha 
aesthetic, which controls the transparency of the 
points 

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, alpha = class))





ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy, shape = class))

or the shape of the points:





One common problem when creating ggplot2 
graphics is to put the + in the wrong place: it must 
come at the end of the line, not the start. In other 
words, make sure you haven’t accidentally written

ggplot(data = mpg)
+ geom_point(mapping = aes(x = displ, y = hwy)



One way to add additional variables is with 
aesthetics. Another way, particularly useful for 
categorical variables, is to split your plot into facets, 
subplots that each display one subset of the

Facets



ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_wrap(~ class, nrow = 2)

To facet your plot by a single variable, use facet_wrap(). The first 
argument of facet_wrap() should be a formula, which you create 
with ~ followed by a variable name (here “formula” is the name 
of a data structure in R, not a synonym for “equation”). The 
variable that you pass to facet_wrap() should be discrete:





To facet your plot on the combination of two variables, add 
facet_grid() to your plot call. The first argument of facet_grid() 
is also a formula. This time the formula should contain two 
variable names separated by 

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(drv ~ cyl)





If you prefer to not facet in the rows or columns 
dimension, use a . instead of a variable name, e.g.,
+ facet_grid(. ~ cyl).

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_grid(~ cyl)



Exercises
1. What plots does the following code make? 

ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy)) + 
facet_grid(drv ~ .)



ggplot(data = mpg) + geom_point(mapping = aes(x = displ, y = hwy)) + 
facet_grid(. ~ cyl)



2. Take the first faceted plot in this section:
ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
facet_wrap(~ class, nrow = 2)



Geometric Objects



How are these two plots similar?

A geom is the geometrical object that a plot uses to represent 
data For example, bar charts use bar geoms, line charts use 
line geoms, boxplots use boxplot geoms, and so on.

Example: Scatterplots break the trend; they use the point
geom. As we see in the preceding plots, you can use different
geoms to plot the same data. The plot on the left uses the
point geom, and the plot on the right uses the smooth geom,
a smooth line fitted to the data.



ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy))

ggplot(data = mpg) +
geom_smooth(mapping = aes(x = displ, y = hwy))

To change the geom in your plot, change the geom function that you 
add to ggplot().



you could set the linetype of a line. geom_smooth() will draw a different line, with
a different linetype, for each unique value of the variable that you map to inetype:

ggplot(data = mpg) +
geom_smooth(mapping = aes(x = displ, y = hwy, linetype = drv)) Here geom_smooth() 

separates the cars into three 
lines based on their drv value, 
which describes
a car’s drivetrain



If this sounds strange, we can make it more clear by overlaying the lines 
on top of the raw data and then coloring everything according to drv.

ggplot(data = mpg) +
geom_smooth(mapping = aes(x = displ, y = hwy, linetype = 

drv, color = drv))



ggplot2 will draw a separate object for each unique value of 
the grouping variable

ggplot(data = mpg) +
geom_smooth(mapping = 
aes(x = displ, y = hwy))

ggplot(data = mpg) +
geom_smooth(mapping = 
aes(x = displ, y = hwy, group 
= drv))

gplot(data = mpg) +
geom_smooth(

mapping = aes(x = displ, y = hwy, 
color = drv),

show.legend = FALSE
)



To display multiple geoms in the same plot, add multiple geom
functions to ggplot():

ggplot(data = mpg) +
geom_point(mapping = aes(x = displ, y = hwy)) +
geom_smooth(mapping = aes(x = displ, y = hwy))



Boxplot

A boxplot (also very useful to visualize distributions and detect 
potential outliers) can be plotted using geom_boxplot():

# Boxplot for one 
variable
ggplot(mpg) +

aes(x = "", y = hwy) +
geom_boxplot()

https://statsandr.com/blog/descriptive-statistics-in-r/
https://statsandr.com/blog/outliers-detection-in-r/


# Boxplot by factor
ggplot(mpg) +

aes(x = drv, y = hwy) +
geom_boxplot()



It is also possible to plot the points on the boxplot with geom_jitter(), 
and to vary the width of the boxes according to the size (i.e., the 
number of observations) of each level with varwidth = TRUE:



Finally, it is also possible to divide boxplots into several panels 
according to the levels of a qualitative variable:

https://statsandr.com/blog/variable-types-and-examples/


ggplot(mpg) +
aes(x = drv, y = hwy, fill = drv) + # add color to boxes with fill
geom_boxplot(varwidth = TRUE) + # vary boxes width according to n obs.
geom_jitter(alpha = 0.25, width = 0.2) + # adds random noise and limit its width
facet_wrap(~year) + # divide into 2 panels
theme(legend.position = "none") # remove legend



Statistical Transformations



Bar charts seem simple, but they are interesting because they 
reveal something subtle about plots. Consider a basic bar 
chart, as drawn with geom_bar().

Example: The following chart displays the total number of 
diamonds in the diamonds dataset, grouped by cut. The 
diamonds dataset comes in ggplot2 and contains information 
about ~54,000 diamonds, including the price, carat, color, 
clarity, and cut of each diamond. The chart shows that more 
diamonds are available with high-quality cuts than with low 
quality cuts:



> diamonds 
# A tibble: 53,940 × 10 
   carat       cut color clarity depth table price     x     y     
z 
   <dbl>     <ord> <ord>   <ord> <dbl> <dbl> <int> <dbl> <dbl> 
<dbl> 
1   0.23     Ideal     E     SI2  61.5    55   326  3.95  3.98  
2.43 
2   0.21   Premium     E     SI1  59.8    61   326  3.89  3.84  
2.31 
3   0.23      Good     E     VS1  56.9    65   327  4.05  4.07  
2.31 
4   0.29   Premium     I     VS2  62.4    58   334  4.20  4.23  
2.63 
5   0.31      Good     J     SI2  63.3    58   335  4.34  4.35  
2.75 
6   0.24 Very Good     J    VVS2  62.8    57   336  3.94  3.96  
2.48 
7   0.24 Very Good     I    VVS1  62.3    57   336  3.95  3.98  
2.47 
8   0.26 Very Good     H     SI1  61.9    55   337  4.07  4.11  
2.53 
9   0.22      Fair     E     VS2  65.1    61   337  3.87  3.78  
2.49 
10  0.23 Very Good     H     VS1  59.4    61   338  4.00  4.05  
2.39 
# ... with 53,930 more rows 
 

 



ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut))



On the x-axis, the chart displays cut, a ‘variable from diamonds. On the y-axis, it 
displays count, but count is not a variable in diamonds! Where does count come 
from? Many graphs, like scatterplots, plot the raw values of your dataset. Other 
graphs, like bar charts, calculate new values to plot:
◦ Bar charts, histograms, and frequency polygons bin your data and then plot bin 
counts, the number of points that fall in each bin.
◦ Smoothers fit a model to your data and then plot predictions from the model.
◦ Boxplots compute a robust summary of the distribution and display a specially 
formatted box.

The algorithm used to calculate new values for a graph 
is called a stat, short for statistical transformation. The 
following figure describes how this process works with 
geom_bar().



You can generally use geoms and stats interchangeably. For example, 
you can re-create the previous plot using stat_count() instead of 
geom_bar():
ggplot(data = diamonds) +
stat_count(mapping = aes(x = 
cut))



ggplot2 provides over 20 stats for you to use. Each stat 
is a function, so you can get help in the usual way, e.g., 
?stat_bin. 

https://bda2020.files.wordpress.com/2016/05/ggplot2-cheatsheet-2-0-2.pdf

To see a complete list of stats, try the ggplot2 cheatsheet

https://bda2020.files.wordpress.com/2016/05/ggplot2-cheatsheet-2-0-2.pdf


Position Adjustments
There’s one more piece of magic associated with bar charts. You can 
color a bar chart using either the color aesthetic, or more usefully, fill:

ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, color = cut)) ggplot(data = diamonds) +

geom_bar(mapping = aes(x = cut, fill = cut))



Note what happens if you map the fill aesthetic to another variable, like clarity: 
the bars are automatically stacked. Each colored rectangle represents a 
combination of cut and clarity:

ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, fill = clarity))



position = "dodge" places overlapping objects directly beside 
one another. This makes it easier to compare individual values:

ggplot(data = diamonds) +
geom_bar(
mapping = aes(x = cut, fill = clarity),
position = "dodge")



This can be done with many types of plot, not only with boxplots. For instance, if a categorical variable has 
many levels or the labels are long, it is usually best to flip the coordinates for a better visual:

ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut, fill = clarity),

position = "dodge") +
coord_flip()



Coordinate Systems



Coordinate systems are probably the most complicated part of ggplot2. 
The default coordinate system is the Cartesian coordinate system where 
the x and y position act independently to find the location of each point. 

There are a number of other coordinate systems that are occasionally 
helpful:

◦ coord_flip() switches the x- and y-axes. This is useful (for example) if 
you want horizontal boxplots. It’s also useful for long labels—it’s hard to 
get them to fit without overlapping on the x-axis

Coordinate Systems



ggplot(data = mpg, 
mapping = aes(x = class, y = 
hwy)) +
geom_boxplot()

ggplot(data = mpg, mapping = 
aes(x = class, y = hwy)) +
geom_boxplot() +
coord_flip()



◦ coord_quickmap() sets the aspect ratio correctly for maps. This is very 
important if you’re plotting spatial data with ggplot2:

world <- map_data("world")
ggplot(world, aes(long, lat, group = group)) +

geom_polygon(fill = "white", color = "black")

ggplot(world, aes(long, lat, group = group)) +
geom_polygon(fill = "white", color = "black") +
coord_quickmap()



coord_polar() uses polar coordinates. Polar coordinates 
reveal an interesting connection between a bar chart 
and a Coxcomb chart:



bar <- ggplot(data = diamonds) +
geom_bar(

mapping = aes(x = cut, fill = cut),
show.legend = FALSE,
width = 1

) +
theme(aspect.ratio = 1) +
labs(x = NULL, y = NULL)

bar + coord_flip()
bar + coord_polar()



Simple pie charts



Create some data :

df <- data.frame( group = c("Male", "Female", "Child"), value 
= c(25, 25, 50) ) 
head(df)

> head(df)
group value

1   Male    25
2 Female    25
3  Child    50
> 



Use a barplot to visualize the data :
library(ggplot2)
# Barplot
bp<- ggplot(df, aes(x="", y=value, fill=group))+
geom_bar(width = 1, stat = "identity")

bp



Create a pie chart :
pie <- bp + coord_polar("y", start=0)
pie



Change the pie chart fill colors
# Use custom color palettes 
pie + scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9"))



# use brewer color palettes 
pie + scale_fill_brewer(palette="Dark2")



Create a pie chart from a factor variable



PlantGrowth data is used :

head(PlantGrowth)

> head(PlantGrowth)
weight group

1   4.17  ctrl
2   5.58  ctrl
3   5.18  ctrl
4   6.11  ctrl
5   4.50  ctrl
6   4.61  ctrl
> 



Create the pie chart of the count of observations in each 
group :
ggplot(PlantGrowth, aes(x=factor(1), fill=group))+

geom_bar(width = 1)+
coord_polar("y")



How to create a histogram 
plot using ggplot2 package

The function geom_histogram() is used. You can also  
add a line for the mean using the function geom_vline



Example#1:
> chol <-
read.table(url("http://assets.datacamp.com/blog_assets/chol.txt"),  
header = TRUE)
> head(chol)

AGE HEIGHT WEIGHT CHOL SMOKE BLOOD MORT
1 20 176 77 195 nonsmo b alive
2 53 167 56 250 sigare o dead
3 44 170 80 304 sigare a dead
4 37 173 89 178 nonsmo o alive
5 26 170 71 206 sigare o alive
6 41 165 62 284 sigare o alive
>

http://assets.datacamp.com/blog_assets/chol.txt


Basic histogram plots

> ggplot(chol, aes(x=AGE)) + geom_histogram()



Change the width of bins
ggplot(chol, aes(x=AGE)) + geom_histogram(binwidth=2)



Change colors
ggplot(chol, aes(x=AGE)) + geom_histogram(color="black", fill="red")



Add mean line on the histogram
ggplot(chol, aes(x=AGE)) + geom_histogram(binwidth=2, color="black", fill="red")+
geom_vline(aes(xintercept=mean(AGE)), color="blue", linetype="dashed", size=1)



Add Density Plot on the Histogram
• The histogram is plotted with density instead of count on y-axis
• Overlay with transparent density plot. The value of alpha controls the level of transparency

Read more on ggplot2 line  
types : ggplot2 line types

ggplot(chol, aes(x=AGE)) + geom_histogram(aes(y=..density..), colour="black", fill="white")+  
geom_density(alpha=.2, fill="#FF6666")



A histogram (useful to visualize distributions and detect 
potential outliers) can be plotted using geom_histogram():

Example#2

ggplot(mpg) +
aes(x = hwy) +
geom_histogram()

https://statsandr.com/blog/descriptive-statistics-in-r/
https://statsandr.com/blog/outliers-detection-in-r/


By default, the number of bins is equal to 30. You can change this value using 
the bins argument inside the geom_histogram() function:

ggplot(mpg) +
aes(x = hwy) +
geom_histogram(bins = sqrt(nrow(mpg)))

Here I specify the number of bins 
to be equal to the square root of 
the number of observations 
(following Sturge’s rule) but you 
can specify any numeric value.



Density plotDensity plots can be created using geom_density()

ggplot(mpg) +
aes(x = hwy) +
geom_density()

https://statsandr.com/blog/descriptive-statistics-in-r/


Combination 
of histogram 
and densities

We can also superimpose a histogram and a density curve on the same plot:
ggplot(mpg) +

aes(x = hwy, y = ..density..) +
geom_histogram() +
geom_density()



Or 
superimpose 
several 
densities:

ggplot(mpg) +
aes(x = hwy, color = drv, fill = drv) +
geom_density(alpha = 0.25) # add transparency



How to put Multiple graphs on one page (ggplot2)
Reference: Cookbook for R



The easy way is to use the multiplot function



Plot the binomial distribution for p = 0.3, p = 05 and p = 0.8 and the
total number of trials n = 60 as a function of k the number of
successful trials. For each value of p, determine 1st Quartile, median,
mean, standard deviation and the 3rd Quartile. Present those values
as a vertical box plot with the probability p on the horizontal axis.

Exercise 1:



We begin by calculating the value of k

> k <- c(0:60); k
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
54 55 56 57 58 59 60

Then, we calculate the distribution for each values of p by using

dbP0.3 <- dbinom(k, 60, 0.3); dbP0.3
dbP0.5 <- dbinom(k, 60, 0.5); dbP0.5
dbP0.8 <- dbinom(k, 60, 0.8); dbP0.8

After calculating the value of binomial distributions for each p, we can create the plots.



library(tidyverse)
k <- c(0:60); k
dbP0.3 <- dbinom(k, 60, 0.3); dbP0.3
dbP0.5 <- dbinom(k, 60, 0.5); dbP0.5
dbP0.8 <- dbinom(k, 60, 0.8); dbP0.8
df<- data.frame (k, dbP0.3,dbP0.5,dbP0.8); 
df 

After calculating the value of binomial distributions for each p, we can create the plots.

ggplot(df, aes(x = k))+
geom_line(aes(y = dbP0.3), colour="blue")+  
geom_line(aes(y = dbP0.5), colour = "red")+  
geom_line(aes(y = dbP0.8), colour = "green")+  
ylab(label="Probability")+
xlab("Sucessful Trials")+
ggtitle("Density of Binomial Distributions")+
theme(plot.title = element_text(lineheight=.8, face="bold"))



For each value of p, determine 1st Quartile, median, mean, 
standard  deviation and the 3rd Quartile.

quantile(dbP0.3)
quantile(dbP0.5)
quantile(dbP0.8)

median(dbP0.3)  
median(dbP0.5)  
median(dbP0.8)  

mean(dbP0.3)  
mean(dbP0.5)  
mean(dbP0.8)

sd(dbP0.3)  
sd(dbP0.5)
sd(dbP0.8)  



> quantile(dbP0.3)
0% 25% 50% 75% 100%

4.239116e-32 7.460887e-13 8.357380e-06 9.613404e-03
1.118036e-01

The 1st Quartile is 7.460887e-13

> quantile(dbP0.5)
0% 25% 50% 75% 100%

8.673617e-19 3.349811e-10 4.613852e-05 1.227688e-02
1.025782e-01

The 1st Quartile is 3.349811e-10

> quantile(dbP0.8)
0% 25% 50% 75% 100%

1.152922e-42 6.585109e-20 1.572006e-07 5.842579e-03
1.278228e-01

The 1st Quartile is 6.585109e-20



median
> median(dbP0.3)  
[1] 8.35738e-06
> median(dbP0.5)  
[1] 4.613852e-05
> median(dbP0.8)  
[1] 1.572006e-07

mean
> mean(dbP0.3)  
[1] 0.01639344
> mean(dbP0.5)  
[1] 0.01639344
> mean(dbP0.8)
[1] 0.01639344

standard deviation
> sd(dbP0.3)  
[1] 0.03239755
> sd(dbP0.5)  
[1] 0.03062992
> sd(dbP0.8)  
[1] 0.03527981



3rdQuartile
> quantile(dbP0.3)

0% 25% 50% 75% 100%
4.239116e-32 7.460887e-13 8.357380e-06 9.613404e-03 1.118036e-01

The 3st  Quartile is 9.613404e-03

> quantile(dbP0.5)
0% 25% 50% 75% 100%

8.673617e-19 3.349811e-10 4.613852e-05 1.227688e-02 1.025782e-01

The 3st  Quartile is 1.227688e-02
> quantile(dbP0.8)

0% 25% 50% 75% 100%
1.152922e-42 6.585109e-20 1.572006e-07 5.842579e-03 1.278228e-01

The 1st  Quartile is 5.842579e-03



Exercise 2: Present those values  as a vertical box plot with 
the probability p on the horizontal axis.



References
By now you have seen that {ggplot2} is a very powerful and complete package 
to create plots in R. This article illustrated only the tip of the iceberg, and you 
will find many tutorials on how to create more advanced plots and 
visualizations with {ggplot2} online. If you want to learn more than what is 
described in the present article, I highly recommend starting with:
•the chapters Data visualisation and Graphics for communication from the 
book R for Data Science from Garrett Grolemund and Hadley Wickham
•the book ggplot2: Elegant Graphics for Data Analysis from Hadley Wickham
•the book R Graphics Cookbook from Winston Chang
•the ggplot2 extensions guide which lists many of the packages that 
extend {ggplot2}
•the {ggplot2} cheat sheet

https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/graphics-for-communication.html
https://r4ds.had.co.nz/
https://ggplot2-book.org/
https://r-graphics.org/
https://exts.ggplot2.tidyverse.org/gallery/
https://statsandr.com/blog/files/ggplot2-cheatsheet.pdf


Import Data from Statistical Softwares
SAS/SPSS/STATA into R



https://haven.tidyverse.org/

Haven Package part of tidyverse

# The easiest way to get haven is to install the whole tidyverse: 
install.packages("tidyverse") 

# Alternatively, install just haven: 
install.packages("haven")

https://haven.tidyverse.org/
https://haven.tidyverse.org/index.html
https://tidyverse.org/
https://rdrr.io/r/utils/install.packages.html
https://rdrr.io/r/utils/install.packages.html


read_sas("iris.sas7bdat")

# SAS
library(haven)

write_sas(iris, "iris.sas7bdat")



# SPSS
read_sav("iris.sav")
write_sav(iris, "iris.sav")



# Stata
read_dta("iris.dta")
write_dta(iris, "iris.dta")



library(haven)

# SAS
read_sas(“iris.sas7bdat”)
write_sas(iris, “iris.sas7bdat”)

# SPSS
read_sav("iris.sav")
write_sav(iris, “iris.sav”)

# Stata
read_dta(“iris.dta")
write_dta(iris, “iris.dta")

Exercise (1): Read and write 
mtcars data in all statistical 
softwares SAS/SPSS/STATA 
data file formats



Thanks you


