Lecture 1

Introduction to R

Dr. Abbas Maaroof
aimaaroof@gmail.com
AITRS-1 June 2021

Course Outline

1.Introduction to R -Day #1
2.Fundamentals of R-Day#?2
3.Visualizing Data with ggplot2-Day#3

References

- Data Analysis, Statistics, and Graphics

Making Everything Easier!”

Hands-On Programming
with R

Garrett Grolemund

Foreword by Hadley Wickham
T

Learn to:

\ «Use Rfor data analysis
AT \ and processing
’ . 'wmn WM&OI:S Illld scripes
or repeat analysis
HaHdS'OH + Create high-quality charts
Programmin OO OO ekt
> g g . Ngm;b!‘:‘h:cl analysis
withR
O'REILLY* Paul Teetor Andeis deNries
Joris Meys

Garrett Grolemund
Foreword by Wkham

Hint: You can download these ebooks as a pdf files for free

Why Learn R?

* R -the programming language favored by many statisticians because
facilitate matrix arithmetic - carrying out complex, often automated
calculations on data which is held in a grid of rows and columns.

* Named from the initials of the two men who first developed the
language at Dept. of Statistics of University of Auckland, New Zealand

during 1990s, Robert Gentleman and Ross lhaka.

* Ris very good for creating programs which can carry out calculations
on these datasets, even when the datasets are constantly growing
in size at an ever-increasing rate, and producing real-time
visualizations based on this data.

* Risacomputer programming language which is particularly well
suited to handling and sorting the large datasets associated with Big
Data projects.

 The software environment used to create code in R is open sourced,
meaning it is free to download, anyone can use it, and there is a
plethora of guidance and advice available on how to use it most
effectively.

R designers realized that visualization was key to being able to
understand the complex datasets that are being explored,
incorporated functionality to translate data into charts, graphs and
complex multi-dimensioned matrices - as well as many user-defined
methods of visualization - into its core.

Online, R code is everywhere although you won't see it, as it's
always hidden behind pretty graphical interfaces. But when you
use Google, Facebook or Twitter you are almost certainly executing
R code running on the servers of those organizations.

It is also capable of executing code written in other languages such
as C++ or Java, so resources coded in those languages can be made
available. Because it can be compiled to run on any major operating
system, R code can easily be ported between Unix, Windows or
Mac environments.

With a reported more than two million users worldwide, and
thousands of deployed applications created using it, R is
undoubtedly one of the backbone technologies of the Big Data
revolution.

Why Learn R?

Relates to other Languages

Open Source Language

Cross-Platform Compatible Vast Community

T

¢

Advanced Statistical Language

5

Outstanding Graphs

Supports Extensions

!

Extremely
Comprehensive

l

Flexible 'n’ Fun

Benefits of UsingR

Here are some benefits | found after using R:

* The style of coding is quite easy.

* [t’s open source. No need to pay any subscription charges.

 Availability of instant access to over 17649 packages
customized for various computation tasks.

* The community support is overwhelming. There are
numerous forums to help you out.

* Get high performance computing experience (require
packages)

* One of highly sought skill by analytics and data science
companies.

Things R does and What R does not do

R does

R does not

Data handling and storage: numeric,
textual

Matrix algebra

Has tables and regular

Expressions

high-level data analytic and statistical
functions

classes (“Object Oriented”)
Graphics

programming language: loops,
branching, Subroutines

Is not a database, but connects to
DBMSs

has no graphical user interfaces,
however it connects to Java, TclTk and
it has R Studio

language interpreters are not fast.
However, R could be extended by
compiled C/C++ code

No spreadsheet view of data, but
connects to MS Excel.

No professional / commercial Support
but you can use help

A world map of R user activity

=
9o
=
m |
£
=
o
o
=

Population weighted global R score: the scaled average of the number of R conference attendees, R
Foundation and RUG members, R-bloggers.com visits and CRAN downloads per 1,000 people.

Red values indicate low, the intensity of blue refers to high values.

Statistical Packages

Packaging: a crucial infrastructure to efficiently produce,

load and keep consistent software libraries from (many)

different sources / authors

Most R packages deal with statistics and data analysis
Many statistical researchers publish their state of the art
methods as R packages.

Comprehensive R Archive Network (CRAN) is a place where
you can fetch those packages for free. You can get truly

powerful tools at CRAN, you can find them at this link:
https://cran.r-project.org/

https://cran.r-project.org/

Looking At Some of the Unique Features of R

1 Performing multlple calculations with vectors

R is a vector-based language. You can think of a vector as a row or column of numbers or text.
The list of numbers {1,2,3,4,5}, for example, could be a vector. Unlike most other programming
languages, R allows you to apply functions to the whole vector in a single operation without the
need for an explicit loop. We’'ll illustrate with some real R code. First, we’ll assign the values 1:5

to a vector that we’ll call x:

>x<-1:5

> X

[1]112345

Next, we’ll add the value 2 to each element in the vector x and print the
result:

>X+2

(1134567

You can also add one vector to another. Toadd the values 6:10 element-wise to
X, you do the following:

>x+6:10

[1] 79 11 1315

To do this in most other programming language would require an explicit loop
to run through each value of x.

Looking At Some of the Unique Features of R

2. Processing more than just statistics

R was developed by statisticians to make statistical processing easier. This heritage continues,
making R a very powerful tool for performing virtually any statistical computation.

The result is that R is now eminently suitable for a wide variety of nonstatistical tasks,
including

Data processing,

Graphic visualization,

and analysis of all sorts

R is being used in Which means that you can
The fields of finance, use R alone to program
Natural language processing :

’ nythin wan
Genetics, d yt 5 you Wad t
Biology,

Market research, to name just a few

Looking At Some of the Unique Features of R

3. Running code without a compiler

R is an interpreted language, which means that — contrary to
compiled languages like C and Java — you don’t need a compiler
to first create a program from your code before you can use it

The days of commercial statistical languages and packages such
as SAS, Stata and SPSS are over,"

Popularity of Programming Language (PYPL) Ranking 2020 The days of
commercial

Python N statistical

Java I - anguages anc

JavaScript N :s CSIESgeSSt:EaCh

and SPSS are
over.

Matlab

Popularity Rating in %

Any questions

How to install R and R Studio ?

Install R

Install R

To install R on your computer (legally for free!), go to the home website of R
Download R of Windows, Mac-0S or Linux from

https://www.r-project.org/

and do the following (assuming you work on a windows/Mac-0OS computer):

ick download CRAN in the left bar

hoose a download site (normally 0-cloud) https://cloud.r-project.org/
noose Windows as target operation system

ick base

noose Download R 4.1.0 for Windows (86 megabytes, 32/64 bit) and
noose default answers for all questions

O 0O 0000

o Uk wheE

https://cloud.r-project.org/
https://www.r-project.org/

Install R

e Download R of Windows, Mac-OS or Linux from
http://cran.r-project.org/
e |[f you like command line interface, you do not need more than that.

The Comprehensive R Archive Network

Download and Install R

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely
want one of these versions of R:

CRAN e Download R for Linux (Debian, Fedora/Redhat, Ubuntu)

Mirrors ¢ Download R for macOS

What's new? ¢ Download R for Windows

Task Views

Search R is part of many Linux distributions, you should check with your Linux package management system in addition to
the link above.

About R Source Code for all Platforms

R Homepage

The R Journal Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the
source code. The sources have to be compiled before you can use them. If you do not know what this means, you

Software i
probably do not want to do it!

R Sources

Il}fo(nanes o The latest release (2021-05-18, Camp Pontanezen) R-4.1.0 tar.gz, read what's new in the latest version.

ackages

Other ¢ Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release).

Documentation ¢ Daily snapshots of current patched and development versions are available here. Please read about new

Manuals features and bug fixes before filing corresponding feature requests or bug reports.

FAQs

Contributed ¢ Source code of older versions of R is available here.

¢ Contributed extension packages

Questions About R

¢ If you have questions about R like how to download and install the software, or what the license terms are,
please read our answers to frequently asked questions before you send an email.

What are R and CRAN?

http://cran.r-project.org/

There are a lot of options for running R on your computer. Now, when you install R, it does have its own

app, and you can open that and you can run commands.

This is one way to

go.
| actually don't
use this one very
often,

because it opens
up several
different windows
and also because
the keyboard
commands

r

R i

R Console

W/ <

[lif

R version 4.0.3 (2020-10-10) -- "Bunny-Wunnies Freak Out"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl?.@ (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q(Q" to quit R.

During startup - Warning messages:
1: Setting LC_CTYPE failed, using "C"

2: Setting LC_COLLATE failed, using "C"

3: Setting LC_TIME failed, using "C"

4: Setting LC_MESSAGES failed, using "C"

5: Setting LC_MONETARY failed, using "C"

[R.app GUI 1.73 (7892) x86_64-apple-darwinl7.0]

WARNING: You're using a non-UTF8 locale, therefore only ASCII characters will work.
Please read R for Mac 0S X FAQ (see Help) section 9 and adjust your system preferences
accordingly.

[Workspace restored from /Users/admin/.RData]

[History restored from /Users/admin/.Rapp.history]

> head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
> plot(iris)

>

E

Quartz 2 [*]

Sepal.Length

Sepal. Width

IO GOD0000000000

JoMMessszsnsanioNe)

Petal.Length

L

T
2 34567

Petal.Width

HIIII

1

Species

3 5 7

45 55 65 75

1

1.0 1.5 20 25 3.0

Environment for R

Install R_Studio

e |f you prefer an integrated development environment (IDE), an IDE normally
consists of a source code editor, build automation tools and a debugger. Most
modern IDEs have intelligent code completion. download R Studio from
http://www.rstudio.com

e You will keep on fetching packages (libraries) from the CRAN
http://cran.r-project.org/ site.

e Run R installation first, then install R Studio. That is all.

e When we use R, we will use R Studio, except in rare circumstances.

http://www.rstudio.com/
http://cran.r-project.org/

3 Install R_Studio

To install RStudio, go to:

http://www.rstudio.com

And do the following (assuming you work on a windows computer):

1. Click Download RStudio
2. Click Download RStudio Desktop

3. Click Recommended For Your System
4. Download the .exe file and run it (choose default answers for all

questions)

http://www.rstudio.com/

Ste p# 1 http://www.rstudio.com/

@Studio’

Live Webinar Pre

Rethi

LEARN M(

https://www.rstudio.com/#

BLACK LIVES MATTER [iom US AND DONATE

OPEN SOURCE
Get started with R

RStudio
The premier IDE for R

RStudio Server

RStudio anywhere using a web browser

Shiny Server

Put Shiny applications online

R Packages

Shiny, R Markdown, Tidyverse and more

Products ~ Solutions v Customers

HOSTED SERVICES

Be our guest, be our guest

&> RStudio Cloud

Do, share, teach and learn data science

RStudio Public Package Manager

An easy way to access R packages

@ shinyapps.io

Let us host your Shiny applications

X

DOWNLOAD SUPPORT DOCS COMMUNITY Q

Resources v About v Pricing

PROFESSIONAL

Enterprise-ready

' RStudio Team

\

Asingle home for R & Python Data

Science Teams

RStudio Server Pro
RStudio for the Enterprise

RStudio Connect

Easily share your insights

RStudio Package Manager

Control and distribute packages

http://www.rstudio.com/

Step#?2

New in RStudio 1.4

Love what you code, from faster development with our Visual Markdown Editor, new Python capabilities, and a

host of quality of life improvements, helping to bridge the gap between tools and teams.

Read the Announcement

here are two versions of RStudio:

RStudio Desktop RStudio Server
Run RStudio on your desktop / Centralize access and computation

Step#3

eStudio Desktop

Overview

Support

License

Pricing

DOWNLOAD RSTUDIO DESKTOP

Open Source Edition

Access RStudio locally

Syntax highlighting, code completion, and smart
indentation

Execute R code directly from the source editor
Quickly jump to function definitions

View content changes in real-time with the Visual
Markdown Editor

Easily manage multiple working directories using
projects

Integrated R help and documentation

Interactive debugger to diagnose and fix errors
Extensive package development tools

Community forums only

AGPL V3

RStudio Desktop Pro

All of the features of open source; plus:

e Acommercial license for organizations not
able to use AGPL software

e Access to priority support

e RStudio Professional Drivers

e Connect directly to your RStudio Server Pro
instance remotely

e Priority Email Support
e 8hourresponse during business hours (ET)

RStudio License Agreement

$995/year

DOWNLOAD FREE RSTUDIO DESKTOP PRO TRIAL

R Studio

Q-2 B H 25 v Addins v R Project: (None) ~

@7 Untitled1 — Environment History = |

7] | | []Sourceonsave | Q 7 +| il [=®Run | 59| [#Source ~| = = [4 ImportDatasetv ¥ List~
1 ") Global Environment ~

Files Plots Packages Help Viewer f—
@) New Folder @ | Delete [+ Rename gk More~

[] & Home
- Name Size Modified
(] @1 Rnistory 0B Oct 18, 2016, 8:27 PM
141 (Top Level) = R Script + D (1 Custom Office Templates
&= R
Console =
R version 3.3.1 (2016-06-21) -- "Bug in Your Hair"

Copyright (C) 2016 The R Foundation for statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()" or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type ‘'contributors()" for more information and
‘citation()’ on how to cite R or R packages in publications.

Type ‘demo()’ for some demos, 'help()’ for on-line help, or
"help.start() " for an HTML browser interface to help.

Type 'q()' to quit R.

Navigating the RStudio Environment

000
O - Opl -

Go to file/function

@ Google text mining-Word associat... *

~ Addins ~

@ | Final -Good Twitter analysis-Best.R*

freq), y

@ | New Twitter Great using tidtext pa... *

freq)) +

Source on Save A5~
189 ~ H#HHHHI BRI
190 #Plot Word Frequencies
191 v #EHHBHBBHBBHHBEH IR
192
193 1library(ggplot2)
194 ggplot(subset(wf, freq-80), aes(x = reorder(word,
195 xlab("Words") + ylab("Count") + coord]

196 theme(axis.text=element_text(size=11,

198

R-Script |

199>
200 #wordcloud
201 v ##HHRHRIY
202

203 ##
204 library("RColorBrewer")

205 #Plot words that occur at least
206 #set.seed(142)#very good one
207 #wordcloud(names(freq), freq, min.freq=10)
208 |

200 #Dlob iho 100 mack Ennaian T SO S (AP

210
208:1

AR

Loading required package: RColorBrewer

25 times

E3 (Untitled) *

Console ~/

> library(ggplot2)

> ggplot(subset(wf, freq>80), aes(x = reorder(word, -freq), y = freq)) + geom_bar(stat="identity",fill = "dark red") +

+ xlab("Words") + ylab("Count") + coord_flip() +

+ theme(axis.text=element_text(size=11,face= "bold", colour= "black"))

>

R-Console

geom_bar(stat="identity",fill

RStudio
R Project: (None) ~
- Environment History Connections Tutorial
®Run | % i* Source ~ ol e # Import Dataset ~ = 3 List ~
"} Global Environment ~
resalt 2 ahe Af 10 vaeiahl
resultl °
“dark red®) - D et R environment- command
w
Values ° ° °
oo | history and existing
access_token_secret
ADB_text o lc r
api_key b I
e variapies
cname -
freq Named num [1:18147] 1082 654 601 487 442 ...
i 1L
n.tweet 276L
ord int [1:18147] 1691 889 1374 1585 1407 219 1692 721 683 999 ...
toSpace function (x, ...)
Files Plots Packages Help Viewer
R Script ¢ A Zoom = Export v~ © y 45, Publish ~
=0 states-
live-
astrazeneca- []
red- 1
india- [|
now - ===
royal-
thank- N . o
= & Displays Graphical
second- N |Sp ays ra p Ica
march- I
village - I
fresh- I
ke E— esuits utput a e
zeneca- [|
channel - []
2 ministry- pa ges
S astra- N
= government- IS
first- I
buy - B
china- NN
news - []
vaccinate- [N
chinese- IIEEENENENGNGNG
doses- I
million- I
get- I
health- I
vaccines- [N
cambodia- I
sen- [
techo-
samdech- [
kovid- I
vaccine - | —
0 300 600 900

Y o o 8

—

Let’s quickly understand the interface of R Studio:

R Console: This area shows the output of code you run. Also, you can directly
write codes in console. Code entered directly in R console cannot be traced later.
This is where R script comes to use. Hint : Ctl | to clear the screen of the Console.
R Script: As the name suggest, here you get space to write codes. Torun those
codes, simply select the line(s) of code and press Ctrl + Enter. Alternatively, you
can click on little ‘Run’ button location at top right corner of R Script.

R environment: This space displays the set of external elements added and
command history and existing variables. This includes data set, variables, vectors,
functions etc. Tocheck if data has been loaded properly in R, always look at this
area.

Graphical Output: This space display the graphs created during exploratory data
analysis. Not just graphs, you could select packages, seek help with embedded R’s
official documentation. Hit Help tab to get to the main help page.

Hint in running R
You can run R using a number of text editors or “integrated development
environments” (IDEs). Most people prefer some other application than R’s native
environment, which provides only limited functionality in terms of syntax
highlighting, auto-completion, and debugging. Alternatives include RStudio and
Emacs/ESS. | very much prefer the latter, but if you’ve never programmed before |

would go with RStudio (installation instructions here; note that you need both R
and RStudio).

All IDEs include a console and a text editor. The console is where you’ll see the
results (or output) of commands executed from the editor. You can type commands
directly into the console, but this is generally not a good strategy. This is because
the whole purpose of writing code is to make it reproducible. Typing commands in
the text editor will let you come back to them later as long as you save them (using
extension .R).

5. Packages and Help Pages

Statistical Packages

Packaging: a crucial infrastructure to efficiently produce, load and
keep consistent software libraries from (many) different sources /
authors

Most R packages deal with statistics and data analysis

Many professors, programmers, and statisticians use R to design tools
that can help people analyze data. They then make these tools free for
anyone to use. Touse these tools, you just have to download them. They
come as preassembled collections of functions and objects called
packages

Comprehensive R Archive Network (CRAN) is a place where

you can fetch those packages for free. You can get truly power
powerful tools at CRAN. you can find them at this link:
https://cran.r-project.org/

https://cran.r-project.org/

https://cran.r-project.org/

CRAN

Mirrors

What's new? .
Task Views C I IC k
Search

About R
R Homepage
The R Journal

Software

R Sources

RBinaries
. =

Documentation
Manuals

FAQs
Contributed

The Comprehensive R Archive Network

Download and Install R
want one of these versions of R:

e Download R for macOS
e Download R for Windows

the link above.

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely

R is part of many Linux distributions, you should check with your Linux package management system in addition to

probably do not want to do it!

Contributed extension packages

Source Code for all Platforms

Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the
source code. The sources have to be compiled before you can use them. If you do not know what this means, you

o The latest release (2021-05-18, Camp Pontanezen) R-4.1.0.tar.gz, read what's new in the latest version.
Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release).

Daily snapshots of current patched and development versions are available here. Please read about new
features and bug fixes before filing corresponding feature requests or bug reports.

Source code of older versions of R is available here.

Questions About R

 If you have questions about R like how to download and install the software, or what the license terms are,

please read our answers to frequently asked questions before you send an email.

What are R and CRAN?

https://cran.r-project.org/

CRAN
Mirrors
What's new?
Task Views
Search

About R
R Homepage
The R Journal

Software

R Sources
R Binaries
Packages
Other

Documentation
Manuals

FAQs
Contributed

Contributed Packages

Available Packages

Currently, the CRAN package repository featufes 17648 available packages.

ion of Packages

Please type help("INSTALL") Or help("install.packages") in R for information on how to install packages from this repository. The manual R Installation and
Administration (also contained in the R base sources) explains the process in detail.

CRAN Task Views allow you to browse packages by topic and provide tools to automatically install all packages for special areas of interest. Currently, 41 views are
available.

Package Check Results

All packages are tested regularly on machines running Debian GNU/Linux, Fedora, macOS (formerly OS X), Solaris and Windows.

The results are summarized in the check summary (some timings are also available). Additional details for Windows checking and building can be found in the Windows
check summary.

Writing Your Own Packages

The manual Writing R Extensions (also contained in the R base sources) explains how to write new packages and how to contribute them to CRAN.

Repository Policies

The manual CRAN Repository Policy [PDF] describes the policies in place for the CRAN package repository.

Related Directories

Archive

Previous versions of the packages listed above, and other packages formerly available.
Orphaned

Packages with no active maintainer, see the corresponding README.
bin/windows/contrib

‘Windows binaries of contributed packages
bin/macosx/contrib

macOS High Sierra binaries of contributed packages
bin/macosx/el-capitan/contrib

OS X El Capitan binaries of contributed packages

CRAN
Mirrors
What's new?
Task Views
Search

About R
R Homepage
The R Journal

Software
R Sources
R Binaries
Packages
Other

Documentation
Manuals

FAQs
Contributed

A3

aaSEA
AATtools
ABACUS
abbyyR

abc

abc.data
ABC.RAP
abcADM
ABCanalysis
abcdeFBA
ABCoptim
ABCp2
aberf
abcrlda
abctools

abd

abdiv

abe

abess

abf2
abglasso
ABHgenotypeR
abind
abjutils

abn
abnormality
abodOutlier
ABPS
abstractr
abtest
Ac3net

ACA
academictwitteR
acc
accelerometry

arralmiceing

Available CRAN Packages By Name

Accurate, Adaptable, and Accessible Error Metrics for Predictive Models
Amino Acid Substitution Effect Analyser

Reliability and Scoring Routines for the Approach-Avoidance Task

Apps Based Activities for Communicating and Understanding Statistics
Access to Abbyy Optical Character Recognition (OCR) API

Tools for Approximate Bayesian Computation (ABC)

Data Only: Tools for Approximate Bayesian Computation (ABC)

Array Based CpG Region Analysis Pipeline

Fit Accumulated Damage Models and Estimate Reliability using ABC
Computed ABC Analysis

ABCDE_FBA: A-Biologist-Can-Do-Everything of Flux Balance Analysis with this package

Implementation of Artificial Bee Colony (ABC) Optimization
Approximate Bayesian Computational Model for Estimating P2
Approximate Bayesian Computation via Random Forests
Asymptotically Bias-Corrected Regularized Linear Discriminant Analysis
Tools for ABC Analyses

The Analysis of Biological Data

Alpha and Beta Diversity Measures

Augmented Backward Elimination

Adaptive Best Subset Selection in Polynomial Time

Load Gap-Free Axon ABF2 Files

Adaptive Bayesian Graphical Lasso

Easy Visualization of ABH Genotypes

Combine Multidimensional Arrays

Useful Tools for Jurimetrical Analysis Used by the Brazilian Jurimetrics Association
Modelling Multivariate Data with Additive Bayesian Networks

Measure a Subject's Abnormality with Respect to a Reference Population
Angle-Based Outlier Detection

The Abnormal Blood Profile Score to Detect Blood Doping

An R-Shiny Application for Creating Visual Abstracts

Bayesian A/B Testing

Inferring Directional Conservative Causal Core Gene Networks

Abrupt Change-Point or Aberration Detection in Point Series

Access the Twitter Academic Research Product Track V2 API Endpoint
Exploring Accelerometer Data

Functions for Processing Accelerometer Data

Miceina Valna Tmmntatinn far Accalaramatar Nata

Important: Install packages from (almost) anywhere The
devtools R package makes it easy to install packages from
locations other than the CRAN website. devtools provides
functions like install_github, install _gitorious,
install_bitbucket, and in stall url. These work similar to
install.packages, but they search new locations for R
packages. install _github is especially useful because many R
developers provide development versions of their packages
on GitHub. The development version of a package will
contain a sneak peek of new functions and patches but may
not be as stable or as bug free as the CRAN version.

Important: What’s the best way to learn about R packages?

It is difficult to use an R package if you don’t know that it exists. You could
go to the CRAN website and click the Packages link to see a list of available
packages, but you’ll have to wade through thousands of them. Moreover,
many R packages do the same things. How do you know which package
does them best? The R-packages mailing list is a place to start. It sends out
announcements of new packages and maintains an archive of old
announcements. Blogs that aggregate posts about R can also provide
valuable leads. | recommend www.r-bloggers.com|[R-bloggers]. RStudio
maintains a list of some of the most useful R packages in the Getting
Started section of http://support.rstudio.com. Finally, CRAN groups
together some of the most useful—and most respected—packages by
subject area. This is an excellent place to learn about the packages
designed for your area of work.

http://www.r-bloggers.com/
http://support.rstudio.com/

How to install R packages?

Installing Packages:

The sheer power of R lies in its incredible packages. In R, most data
nandling tasks can be performed in 2 ways: Using R packages and R
nase functions. In this course, I'll also introduce you with the most
nandy and powerful R packages. Toinstall a package, simply type:

install.packages('package name")

As a first time user, a pop might appear to select your CRAN mirror
(country server), choose accordingly and press OK.

Note: You can type this either in console directly and press ‘Enter’ or
in R script and click ‘Run’.

Loading Packages:

Installing a package doesn’t immediately place its
functions at your fingertips. It just places them on your
computer. Touse an R package, you next have to load it
in your R session with the command:

library(package name)

Updating R Packages:

For example if you already have ggplot2, reshape2, and
dplyr on your computer, it'd be a good idea to check for
updates before you use them:

update.packages(c("ggplot2", "reshape2”, "dplyr"))

Install.packages

Each R package is hosted at http://cran.r-project.org, the same website
that hosts R.

However, you don’t need to visit the website to download an R package;
you can download packages straight from R's command line. Here’s how:

1. Open RStudio.
2. Make sure you are connected to the Internet.

3. Run install.packages(“ggplot2") at the command line (console)

http://cran.r-project.org/

Example of Packages

We're going to use the gplot function to make some
guick plots. gplot comes in the ggplot2 package, a
popular package for making graphs. Before you can use

gplot, or anything else in the ggplot2 package, you
need to download and install it.

> install.packages("ggplot2")

also installing the cependencies 'stringi’, 'magrittr’,
'colorspace’, 'Rcpp’,.'stringr’, 'RColorBrewer’, 'dichromat,
'munsell’, 'labeling’,.'assertthat’, 'digest’, 'gtable’, 'plyr,
'reshape?’, 'scales’, 'tibble’, 'lazyeval’

Do you want to install from sources the packages which need
compilation?

y/n:y

Library

Installing a package doesn’t place its functions at your
fingertips just yet: it simply places them in your hard
drive. Touse an R package, you next have to load it in your
R session with the command library("ggplot2"). If you
would like to load a different package, replace ggplot2
with your package name in the code.

Package that brings in a whole
bunch of other packages with it

Example important Package is
The tidyverse

These packages are for data
science to make you work easier,
and more efficient

CRAN
Mirrors
What's new?
Task Views
Search

Abour R
R Homepage
The R Journal

Software
R Sources
R Binaries
Packages
Other

Documentarion
Manuals
FAQs
Contributed

tidyverse website

The 'tidyverse' is a set of packages that work in harmony because they share commoj cpresentations and 'API' design. e is designed to make it easy to
install and load multiple 'tidyverse’ packages in a single step. Learn more about th¢ tidyverse' at <https://www.tidyverse.org>.

tidyverse: Easily Install and Load the 'Tidyverse'

_ Version: 13.1
Depends: R(=33)
Imports: broom (= 0.7.6), cli (= 2.4.0). crayon (= 1 .4.1), dbplyr (= 2.1.1). dplyr (= 1.0.5), dtplyr (= 1.1.0). forcats (= 0.5.1), googledrive (= 1.0.1),

googlesheets4 (= 0.3.0), ggplot2 (= 3.3.3), haven (= 2.3.1), hms (= 1.0.0), httr (= 1.4.2), jsonlite (= 1.7.2), lubridate (= 1.7.10). magrittr (= 2.0.1),
modelr (= 0.1.8), pillar (= 1.6.0), purrr (= 0.3 .4), readr (= 1.4.0), readx] (= 1.3.1), reprex (= 2.0.0), rlang (= 0.4.10), rstudioapi (= 0.13), rvest (=

1.0.0), stringr (> 1.4.0), tibble (= 3.1.0). tidyr (= 1.1.3), xml2 (= 1.3.2)

Suggests: covr, feather, glue, knitr, rmarkdown, testthat

Published: 2021-04-15

Author: Hadley Wickham [aut, cre], RStudio [cph, fnd]

Maintainer: Hadley Wickham <hadley at rstudio.com>

BugReports: https://github.com/tidyverse/tidyverse/issues

License: MIT + file LICENSE

URL: https:/tidyverse.tidyverse.org, https://github.com/tidyverse/tidyverse

NeedsCompilation: no

Citation: tidyverse citation info Pa C ka ge S
Materials: README NEWS

CRAN checks: tidyverse results
Downloads:

Reference manual: tidyverse.pdf

Vignettes: The tidy tools manifesto
Welcome to the tidyverse

Package source: tidyverse 1.3.1.targz

Windows binaries: r-devel: tidyverse 1.3.1.zip, r-release: tidyverse 1.3.1.zip, r-oldrel: tidyverse 1.3.1.zip
macOS binaries: r-release: tidyverse 1.3.1.tgz, r-oldrel: tidyverse 1.3.1.tgz

Old sources: tidyverse archive

Reverse dependencies:

Reverse suggests: admixr, ANCOMBC, anomalize, babsim.hospital, bayesmodels, biogrowth, BRDT, causalCmprsk, CelliD, Clustering, clusterPower, ClusTorus,

garma, genesysr, genogeographer, geodiv, GetQuandlData, ggmulti, gMOIP, greta, HSAR, hypeR, ibawds, insee, InteractiveComplexHeatmap,

u
R’ Packages Blog Learn Help Contribute

CRAN
What's new?
Task Views
Search

R packages for data science

About R

R Homepage
The R Journal . i L. .
The tidyverse is an opinionated collection of R
Software
R Sources
R Binaries
Packages
Other

packages designed for data science. All

packages share an underlying design

philosophy, grammar, and data structures.

Documentation
Manuals

FAQs
Contributed

Install th idyverse with:

install.packages("tidyverse")

Learn the tidyverse

See how the tidyverse makes data science

ggplot2

purrr

geplot2

puplotZisay
Grammar of
varlables to o
the det

dplyr
dplyr providd
verbs that 50|

tidyr
tidyr prowide|
datawithac

every columr

readr

readr provid
and fwi]. Itis

whilde still cle

purry

purrr enhand
complete and
Once youl may

loops with cof

tibble

tibble is amo
proven to be

datafram

you to confrg

expressive of

stringr

stringr provid
strings as e
library to prof

manipulatior

forcats

pstem for declaratively creating graphics, based on The
s aphics. You provide the data, tefl ggplot2 how to map
psthetics, what graphical primitives to use, and it takes care of

todocs.

s 2 grammar of data manipulstion, providing a consistent set of

ve the most common data manipulation challenges. Go Lo

asetof functions that help you get to tidy data Tidy datais

nsistent fora in bried, every variable goes in a column, and

B avariable.

s 4 fast and friendly way to read rectangular data (Tike csy, tsy,

Hesigned to Nexibly parse many types of data found in the wild.

poly failing when data unexpectadiy changes. Go Lo docs..

< RS functional peogramming (FP} toolkit by praviding o

consistent set of tools for working with functions and vectors.
Ler the basic concepls, purrr allows you Lo replace many for

He that & easier to write and more expressive, Go todocs

Hesn re-imagining of the data frame, k2eping what time has

pffective, and theowing out what it has nol. Tibbles are

hat are Lazy and surly: they do less and comglain more forcing

it problems eardier, typically leading tlearwr, more

der. Ga to docs

gned ta make working with
uc

jes acobesive set of functions de:

as possitle. It is built on top of stringi, which uses the IC

vide fast, correct implementations of common string

oo o

factars. R uses factors Lo handle categorical variables,

foed and kno

fles 2 sulte of uselul tocls that solve common problems with

iables that have a

wit set of possible values. Go L

Content

Instailation and uze

Core lichyeers
limgort
Wiangle
Pragran
Model

All Packages within tidyverse Package

Exploring R (Examples)

Exploring R
To open RStudio, click the RStudio icon in your menu system or on your desktop,
Once RStudio started, choose File=>New=R Script.

Source: The top-left corner of the screen contains a text editor that lets you work with source script files. Here, you
can enter multiple lines of code, save your script file to disk, and perform other tasks on your script. This code
editor works a bit like every other text editor you've ever seen, but it’s smart. It recognizes and highlights various
elements of your code, for example (using different colors for different elements), and it also helps you find
matching brackets in your scripts.
Console: In the bottom-left corner, you find the console. The console in Rstudio is identical to the console in RGui
This is where you do all the interactive work with R.
Workspace and history: The top-right corner is a handy overview of your workspace, where you can inspect the
variables you created in your session, as well as their values. This is also the area where you can see a history of the
commands you’ve issued in R.
Files, plots, package, and help: In the bottom-right corner, you have access to several tools:

* Files: This is where you can browse the folders and files on your computer.

* Plots: This is where R displays your plots (charts or graphs). We discuss plots in

* PartV.

* Packages: This is where you can view a list of all the installed packages. A package is self-contained set of

code that adds functionality to R, similar to the way that an add-in adds functionality to Microsoft Excel.
* Help: This is where you can browse the built-in Help system of R.

Starting Your First R Session

Start a new R session, type the following in your console, and press
Enter:

> print(“Hello world!”)

R responds immediately with this output:
[1] “Hello world!”

Doing simple math

Type the following in your console to calculate the sum of five numbers:
> 1+2+3+4+5

[1] 15

Using vectors

A vector is the simplest type of data structure in R. To construct

a vector, type the following in the console:
>¢c(1,2,3,4,5)
(1112345

In constructing a vector, you tell the c() function to construct a vector
with the first five integers. The entries inside the parentheses are
referred to as arguments.

One very handy operator is called sequence, and it looks like a colon (:).
Type the following in your console:

>1:5

[1]12345

Type the following in your console to calculate the sum of this
vector:
>sum(1:5)
[1] 15
Storing and calculating values

A much more useful capability is storing values and then doing
calculations on these stored values.

Try the following:

>x<-1:5

> X

(1112345

In these two lines of code, you first assign the sequence 1:5 to a
variable called x. Then you ask R to print the value of x by typing
X in the console and pressing Enter.

Hint: In R, the assighment operator is <-, which you type in the console
by using two keystrokes: the less-than symbol (<) followed by a hyphen
(-). The combination of these two symbols represents assignment

In addition to retrieving the value of a variable, you can do calculations on that
value. Create a second variable called y, and assign it the value 10. Then add the
values of x and vy, as follows:

>y<-10

>X+y

(1] 1112131415

The values of the two variables themselves don’t change unless you assign a new
value. You can check this by typing the following:

> X

(1112345

>y

[1] 10

Now create a new variable z, assign it the value of x+y, and print its value:
>7<-X+Y

> 7

(1] 111213 14 15

Variables also can take on text values. You can assign the value
“Hello” to a variable called h, for example, by presenting the
text to R inside quotation marks, like this:

> h <- “Hello”
> h
[1] “Hello”

Hint: You must present text or character values to R inside quotation
marks — either single or double. R accepts both. So both h <- “Hello”
and h <- ‘Hello” are examples of valid R syntax

In “Using vectors,” earlier in this chapter, you use the c() function to
combine numeric values into vectors. This technique also works for

text. Try it:
> hw <- c(“Hello”, “world!”)

> hw
[1] “Hello” “world!”

You can use the paste() function to concatenate multiple text elements.
Bydefault, paste() puts a space between the different elements, like
this:

/(

> paste(“Hello”, “world!”)
[1] “Hello world!

Piping commands with %>%

The piping commands character with %>%, which is included as part
as the Tidyverse.

Let me give you an example of command and how you would write
it in base R. Base R uses nested commands, which mean you start in

the midd

> round

le ano

(exp(c

you g0 out.

iff(log(x))), 1)

R is a functional language, which means that your code often
contains a lot of parenthesis, (and). When you have complex code,
this often will mean that you will have to nest those parentheses
together. This makes your R code hard to read and understand.
Here's where %>% comes in to the rescue!

How Pipes %>% Work

Old
f3(f2(f1(data,argl), arg2),arg3)

New Pipes command %>%

data %>%
fl(argl) %>%
f2(arg2) %>%
f3(arg3)

Typical example, which is a typical example of nested code:

> # Initialize 'x

> x <-¢(0.109, 0.359, 0.63, 0.996, 0.515, 0.142, 0.017, 0.829, 0.907)
>

> # Compute the logarithm of x’, return suitably lagged and iterated
differences,

> # compute the exponential function and round the result

> round(exp(diff(log(x))), 1)

[1] 3.3 1.8 1.6 0.5 0.3 0.148.8 1.1
>

Note that you need to import the magrittr library to get the
above code to work. That's because the pipe operator is, as you
read above, part of the magrittr library and is, since 2014, also
a part of dplyr. If you forget to import the library, you'll get an

error like

Error in eval(expr, envir, enclos): could not find function "%>%".

https://www.rdocumentation.org/packages/magrittr/versions/1.5

With the help of %<%, you can rewrite the above code as follows:

> # Import magrittr

> library(magrittr)

>

> # Perform the same computations on x as above
> X %>% log() %>%

+ diff() %>%

+ exp() %>%

+ round(1)

[1] 3.3 1.8 1.6 0.5 0.3 0.148.8 1.1

Example 1: plot or (gplot) makes a scatterplot when you

give it two vectors Script
library(ggplot2)

x <-c(-1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1)

y <- X3

gplot(x,y)

> library(ggplot2)
>x <-c(-1,-0.8, -0.6,-0.4,-0.2,0,0.2,0.4, 0.6, 0.8, 1)

>y <-X"3 Console
> gplot(x,y)

Example 1: plot or (gplot) makes a scatterplot when you give it two vectors

Graphical OQutput

Files Plots Packages Help Viewer

F 2 Zoom 4= Export ~ Q

I I
-1.0 0.3 0.0

Scatterplots are useful
for visualizing the
relationship between
two variables.

Example (2)
we’re going to use a different type of graph, a histogram. A histogram visualizes the

distribution of a single variable; it displays how many data points appear at each value
of x.

>x<-¢(1,2,2,2,3,3)
> gplot(x, binwidth = 1)
>

Files Plots Packages Help Viewer e]

-

] /& Zoom & Export~ @ { ‘s, Publish « | (&

3-

Figure 2 . gplot makes a histogram when you give
it a single vector.

count

> X2 <- C(ll 1) 1) 11 11 21 21 2; 2; 3, 3, 4) '95_ i
> gplot(x2, binwidth = 1)

>x3<-¢(0,1,1,2,2,2,3,3,4)
> gplot(x3, binwidth =1)

Figure 3. gplot makes a histogram when
you give it a single vector.

Useful R Packages

Currently, the CRAN package repository features 17648 available packages, I've listed some of
the most powerful and commonly used packages in predictive modeling in this article. Since,
I've already explained the method of installing packages, you can go ahead and install them
now. Sooner or later you’ll need them.

Importing Data: R offers wide range of packages for importing data available in any format such
as .txt, .csy, .json, .sql etc. Toimport large files of data quickly, it is advisable to install and use
data.table, readr, RMySQL, sqldf, jsonlite.

Data Visualization: R has in built plotting commands as well. They are good to create simple
graphs. But, becomes complex when it comes to creating advanced graphics. Hence, you should

install ggplot2.
Data Manipulation: R has a fantastic collection of packages for data manipulation. These

packages allows you to do basic & advanced computations quickly. These packages
are dplyr, plyr, tidyr, lubridate, stringr.

Modeling / Machine Learning: For modeling, caret package in R is powerful
enough to cater to every need for creating machine learning model. However,
you can install packages algorithms wise such as randomForest, rpart, gbm etc

Note: I've only mentioned the commonly used packages. You might like to check
this interesting infographic on complete list of useful R packages.

>install.packages(*package name”)

W Continuous R J.A_lllg. ndomfo 7771
2 T e o]

Data

Analysis

: o TN cort, i |
9 Useful Libraries M%(tlgggg « T o rktr |
 NITET N forvcas 1sh_|
G.MWNMI.NM \

https://www.analyticsvidhya.com/blog/2015/08/list-r-packages-data-analysis/

Getting Help with Help Pages

There are over 1,000 functions at the core of R, and new R functions are created
all of the time. This can be a lot of material to memorize and learn! Luckily, each R
function comes with its own help page, which you can access by typing the
function’s name after a question mark.

For example, each of these commands will open a help page. Look for the pages
to appear in the Help tab of RStudio’s bottom-right pane:

> ?sqrt
> ?logl0

> ?sample

Hint: If a function comes in an R package, R won’t be able to find its help page
unless the package is loaded.

Getting More Help?!

R also comes with a super active community of users that you can turn to for help
on the R-help mailing list. You can email the list with questions, but there’s a great
chance that your question has already been answered. Find out by searching the
archives.

Even better than the R-help list is Stack Overflow, a website that allows
programmers to answer questions and users to rank answers based on
helpfulness. Personally, | find the Stack Overflow format to be more user-
friendly than the R-help email list (and the respondents to be more human
friendly). You can submit your own question or search through Stack Overflow’s
previously answered questions related to R. There are over 30,000.

For both the R help list and Stack Overflow, you’re more likely to get a useful
answer if you provide a reproducible example with your question. This means
pasting in a short snippet of code that users can run to arrive at the bug or

guestion you have in mind.

Getting More Help?!

* R puts a big emphasis on documentation. The previously
mentioned https://www.rdocumentation.org/

IS a great website to look at the different documentation of different
packages and functions.

* There are numerous blogs & posts on the web covering R such
as KDnuggets and R-bloggers.

CB

https://www.kdnuggets.com/
http://www.r-bloggers.com/

Working Directory

Each time you open R, it links itself to a directory on your computer,
which R calls the working directory. This is where R will look for files
when you attempt to load them, and it is where R will save files when
you save them. The location of your working directory will vary on
different computers. To determine which directory R is using as your
working directory, run:

> getwd()
[1] "C:/Users/new/Documents"
>

1. You can place data files straight into the folder that is your working
directory, or

2. You can move your working directory to where your data files are.

3. You can move your working directory to any folder on your
computer with the function setwd. Just give setwd the file path to
your new working directory.

Hint: | prefer to set my working directory to a folder dedicated to
whichever project | am currently working on. That way | can keep all

of my data, scripts, graphs, and reports in the same place. For
example:

Setting your Working Directory

| prefer to set my working directory to a folder dedicated to whichever
project | am currently working on. That way | can keep all of my data,
scripts, graphs, and reports in the same place. For example:

> setwd("C:/Users/new/Desktop/Data files")

Should be like
> getwd() __— thisdirection
[1] "C:/Users/new/Desktop/Data files" of the slash to
> make it work!

Tilde command
> setw esktop/AITRS Course")

If the file path ©

oes not

pegin with your root directory, R will assume

that it begins at your current working directory.

You can also change your working directory by clicking on
Session > Set Working Directory
> Choose Directory in the RStudio menu bar.

You can see what files are in your working directory with list.files(). |f
you see the file that you would like to open in your working directory,
then you are ready to proceed. How you open files in your working
directory will depend on which type of file you would like to open.

> |ist.files()
[1] "deck.csv" "deck.RData"

>

Designing projects

Managing your projects in a reproducible
fashion doesn't just make your science
reproducible, it makes your life easier.

Working directories are useful for keeping work organized. A working directory is
one spot (e.g. a folder) that you have created for saving all of your work.

Here are a couple of different ideas for laying a project out. This is

the basic structure that | usually use:
Hint: Open a folder in your Desktop and

prOJ/ name it then create five subfolders as shown
R/ in the diagrams then you can open it as hew
project in R
d a ta/ ® @ AITRS Course =3 e, @~ » Q
doc/ e T
figs/ = | 2 2
I— Output/ ?Movielsd
@ AirDrop
B3 Creative Clo...
@ OneD

The R directory contains various files with function definitions (but only function definitions -
no code that actually runs).

The data directory contains data used in the analysis. This is treated as read only; in paricular
the R files are never allowed to write to the files in here. Depending on the project, these
might be csv files, a database, and the directory itself may have subdirectories.

The doc directory contains the paper. | work in LaTeX which is nice because it can pick up
figures directly made by R. Markdown can do the same and is starting to get traction among

biologists. With Word you’ll have to paste them in yourself as the figures update.

The figs directory contains the figures. This directory only contains generated files; that is, |
should always be able to delete the contents and regenerate them.

The output directory contains simulation output, processed datasets, logs, or other processed
things.

In this set up, | usually have the R script files that do things in the project root:

In this set up, | usually have the R script files that do things in

the project root: ,
ahe proj/

LR/

-— data/
-— doc/

-— figs/

-— output/
L analysis.R

For very simple projects, you might drop the R directory, perhaps
replacing it with a single file analysis-functions.R which you
source.

The Data Analysis Workflow

The Data Analysis Workflow

1. Importing Data

2. Data Manipulation

3. The Machine Learning Part
4. Data Visualization

5. Reporting your results

1. Importing Data

1.Importing Data

Before you can start performing analysis, you first need to get your data into R. The good thing is that you
can import into R all sorts of data formats, the hard part this is that different types often need a different
approach:

* Flat files: You can import flat files with functions such as read.table() and read.csv() from the pre-
installed utils package. Specific R packages to import flat files data are readr and fread() function of the
data.table package.

* You can get your excel files into R with either the readx| package, the gdata

package and XLConnect package. https://www.datacamp.com/community/tutorials/r-tutorial-read-excel-
into-r

* The haven package lets you import SAS, STATA and SPSS data files into R. The foreign package lets you
import formats like Systat and Weka.

* Connecting with a database happens via specific packages like RMySQL, RpostgreSQL and

the ROracle package. Accessing and manipulating the database happens via DBI.

*For web scraping you can use a package like rvest. (For more info on web scraping with R check
http://blog.rolffredheim.com/2014/02/web-scraping-basics.html

If you want to learn more on how to import data into R check

an https://www.datacamp.com/courses/importing-data-into-r?tap_a=5644-dce66f&tap s=14201-e863d5

https://en.wikipedia.org/wiki/Flat_file_database
http://www.rdocumentation.org/packages/utils/functions/read.table
http://www.rdocumentation.org/packages/utils/functions/read.table
https://cran.r-project.org/web/packages/readr/index.html
http://www.rdocumentation.org/packages/data.table/functions/fread
https://github.com/hadley/readxl
https://cran.r-project.org/web/packages/gdata/
https://cran.r-project.org/web/packages/XLConnect/
https://www.datacamp.com/community/tutorials/r-tutorial-read-excel-into-r
https://github.com/hadley/haven
https://cran.r-project.org/web/packages/foreign/index.html
https://cran.r-project.org/web/packages/RMySQL/
https://cran.r-project.org/web/packages/RPostgreSQL
https://cran.r-project.org/web/packages/ROracle/index.html
https://cran.r-project.org/web/packages/DBI
https://cran.r-project.org/web/packages/rvest/
http://blog.rolffredheim.com/2014/02/web-scraping-basics.html

Loading and Saving Data in R

This Section will show you how to load and save
data into R from plain text files, R files, and Excel
spreadsheets. It will also show you the R packages
that you can use to load data from databases and

other common programs, like SAS and MATLAB,
etc.

The data import features can be accessed from the
environment pane or from the tool's menu.

The importers are grouped into 3 categories:
1. Text (base)-Delimited data (CSV)-CSVs are plain-text

files
2. Text (readr)

3. Excel data
4. Statistical data (SPSS, SAS, and Stata)

To access this feature, use the "Import Dataset”
dropdown from the "Environment" pane as shown below:

20 e

(]

- Op | - EH| = A conm

@ Untitledl

>

L4 L Source on Save A/~

-

17 TTop Level) =

Console ~/Deskion/R Programming Course/Dats)

= Addins ~

RStudio

Bnment History Connectlo

ol s | “* Import Dataset - /

From Text (base)...
From Text (readr...

From Excel... AVicOnment is empty

From SPSS..

From SAS...
From Stata...

Files Plots Packages Help Viewer
R Senpy & -2 Export =

=

E Project iNone) =

=

= List - -

®@® e Newkie X RStudio
© - o = NewProject..,

b Mroject (None) =

O Untitledl = History © Tutorial =

Open File... . %
“Run "% “Source = - = il ™inpont Dataser - = List = .

| Reopen with Encoding...
Recent Files >

% Global Envitonment «

Environment |s empty

Open Project...
Open Project in New Session...

Recent Projects >

Import Dataset > | From Text (base)...

From Text (readr)...
Save

Save As...
Save with Encoding...
Save All

From Excel...

From SPSS...
From SAS...

From Sfata...

|
|
|
|
|
|
Knit Document \

. Files Plots Packages Melp Viewer
Compile Report... i) i

11 Top RScript &

L Export -

Console /Dl Pyblish... =

Print...

Close \
Close All PRW

Clase All ExCept Curees - W

Quit Session...

R's built-in datasets

Now, the datasets package comes with R, it's part of the default

installation. However, it's not loaded,
it's not active in memory by default. And so by using library, and

then in parenthesis, dataset, we'll load it.
And we'll make it available. You can also use require.

short description of each by running:
> |library(package = "datasets")

When we run that command, it's going to give us this information and
this is a list of all of the datasets that are included in that package

@00

>

0 Google text mining-Word assoclat,, * @ Untitled1* @ Final -Cood Twittes analysis-Best.R* O New Twitter Great using tidext pa.. *

- - N = M Coto fikefunchion = Addins -

I _ISourceonSave { S -
17 x <- c(@.109, 0.355, 0.63, 0.9%6, 8.515, 8.14Z, 0.017, ©.829, 0.%87)

19 # Coepute the logarithm of "x', retu
20" # coepute the exponential function and round the
21 round(exp(diffilogix))), 1)

25 help{package - "datasets”)

27 library(package - "datosets")

35 # Import ‘mogrittr
36 library(magrittr)

38 # Perform the some computalians on X GS above
32 x %% log{) %X
25:1 (Tap Level) 2

Console -/

>
>
>
>
>
>
[
>
>
>
>

Intialize 'x°
x <- c(8.109, 8.359, 0.63, 8.996, 8.515, 0.142, 0.617, 9.829, 0.967)

Compute the logarithm of x', return suitaebly lagged and iterated differences,
compute the exponential functiom and round the result
round(exp(diff(log(x))), 1)

1] 3.3 1.8 1.6 0.5 0.3 0.14838 1.1

help(package = “datasets™)
library(package = "datasets”)
help{package = “datasets”)

arn suilably logged and tterated differences,

“ Run

i

RStudio
£ Project. (None) =
20

W Source =
ol

£

R Datasats Package « | #ind in Topic

The R Datasets Package

Ability and Intelligence Tests

airmiles P Miles on C ial US Airlines, 1937-1260
AirPassengers Monthly Airline Passenger Numbers 1949-1960

airquality Naw York Air Quality Measurements

anscombe Anscombe's Quartet of 'Identical’ Simple Linear Regressions
attenu The Joyner-Boore Attenuation Data

attitude The Chatterjee-Price Attitude Data

Quarterly Time Series of the Number of A Resid

R Script §

=
beaverl Body Temperature Series of Two Beavers
beaver2 Body Temperature Series of Two Beavers
beavers Body Temperature Senes of Two Beavers
BJsales Sales Data with Leading Indicator
BJsales lead Sales Data with Leading Indicator
BOD Biochemical Oxygen Demand

Speed and Stopping Distances of Cars

ChickWeight Weight versus age of chicks on different diets
chickwts Chicken Weights by Feed Type

co2 Carbon Dioxids Uptake in Grass Plants

co2 Mauna Loa Atmospheric CO2 Concentration
[=11 Student's 3000 Criminals Data

The R Datasets Package
discoveries Yearly Numbers of Important Discoveries
Elisa assay of DNase

Smoking, Alcohol and (O)esophageal Cancer
Conversion Rates of Euro Currencies
Conversion Rates of Euro Cumencies
Distances Between European Cities and Between US Cities

Daily Closing Prices of Major European Stock Indices, 1991-1998

R comes with many data sets preloaded in the datasets package, which
comes with base R. These data sets are not very interesting, but they
give you a chance to test code or make a point without having to load a
data set from outside R. You can see a list of R’s data sets as well as a

> iris
Sepal.Length Sepal.Width Petal.Length
Petal.Width Species

To use a data set, just type its name. 1 51 35 14 02 setosa
. 2 4.9 3.0 1.4 0.2 setosa

Each data set is already presaved as 3 47 32 13 02 setosa
. 4 4.6 3.1 1.5 0.2 setosa

an R ObJECt' FOr example: 5 5.0 3.6 1.4 0.2 setosa
> iriS 6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa

8 5.0 3.4 1.5 0.2 setosa

9 4.4 2.9 1.4 0.2 setosa

10 4.9 3.1 1.5 0.1 setosa

11 5.4 3.7 1.5 0.2 setosa

12 4.8 3.4 1.6 0.2 setosa

13 4.8 3.0 1.4 0.1 setosa

14 4.3 3.0 1.1 0.1 setosa

Importing data from a spreadsheet

Spreadsheets are the universal data containers. Billions of datasets in the
rows and columns of a spreadsheet. And they're very easy to importin R as
long as you have what's called tidy data and that means each column is a
variable, each row is an observation.

1. Importing data from CSV files

The CSV importer provides support to:

* Import from the file system or a url

 Change column data types

e Skip or include-only columns

* Rename the data set

e Skip the first N rows

* Use the header row for column names

* Trim spaces in hames

 Change the column delimiter

* Encoding selection

* Select quote, escape, comment and NA identifiers

Example (1): You can load the deck data frame from the file deck.csv.
https://gist.github.com/garrettgman/9629323

deck.csv is a comma-separated values file, or CSV for short. CSVs are plain-text
files, which means you can open them in a text editor (as well as many other
programs). If you open desk.csv, you’ll notice that it contains a table of data that
looks like the following table. Each row of the table is saved on its own line, and

a comma is used to separate the cells within each row. Every CSV file shares this
basic format: "face","suit,"value"

"king","spades”,13

"queen","spades,12

"jack","spades,11

"ten","spades, 10

"nine","spades,9
.. ahd so on.

Once everything looks right, click Import. RStudio will read in the data and save
it to a data frame. RStudio will also open a data viewer, so you can see your new
data in a spreadsheet format. This is a good way to check that everything came
through as expected. If all worked well, your file should appear in a View tab of

RStudio, like in Figure (3). You can examine the data frame in the console with
head(deck).

Figure)3(. When you import
a data set, RStudio will save
the data to a data frame and
then display the data frame

el ~ Wil in a View tab. You can open
any data frame in a View tab
at any time with the View
function.

head and tail are two functions that provide an easy way to peek at large data sets.
head will return just the first six rows of the data set, and tail will return just the last
six rows. To see a different number of rows, give head or tails a secondargument, the

number of rows you would like to view, for example, head(deck, 10).

> head(deck)

face suitvalue
1 king spades 13
2 queen spades 12
3 jack spades 11
4 tenspades 10
5 ninespades 9
6 eight spades 8
> tail(deck)

face suitvalue

47 six hearts 6
48 five hearts 5
49 four hearts 4
50 three hearts 3
51 twohearts 2
52 acehearts 1
>

2. Importing data from Excel files

The Excel importer provides support to:

* Import from the file system or a url
* Change column data types

* Skip columns

* Rename the data set

* Select an specific Excel sheet

* Skip the first N rows

* Select NA identifiers

Example select import StateData.x|sx

Example

® o
°

- OR i 77 Co to file/function
@ Untitled1* deck StateData
Filter
“ State state_code region governor
1 Alabama AL South Republican
2 Arizona AZ West Republican
3 Arkansas AR South Republican
4 California CA West Democrat
5 Colorado co West Democrat
6 Connecticut cT Northeast = Democrat
7 Delaware DE South Democrat
8 Florida FL South Republican
9 Georgia GA South Republican
10 Idaho ID West Republican
11 |llinois L Midwest Republican
12 Indiana IN Midwest Republican
13 lowa 1A Midwest Republican
14 Kansas KS Midwest Republican
15 Kentucky KY South Republican
16 Louisiana LA South Democrat

Showing 1 to 16 of 48 entries, 22 total columns

Console ~/Desktop/AITRS Course/

>

select import StateData.xlsx

AITRS Course - RStudio

~ Addins ~ R AITRS Course — Desktop ~
—i= Environment History Connections Tutorial -
=5 ~* Import Dataset ~ y’ List ~ S
psychRegions extraversion agreeableness conscientiousness ne '} Global Environment ~
Friendly and Conventional 555 52.7 55.5 Data
Relaxed and Creative 50.6 46.6 58.4 © deck 52 obs. of 3 variables
Friendly and Conventional 49.9 52.7 41.0 © slsummar 57 obs. of 7 variables
Relaxediand Craativa 514 49.0 43.2 @ StateData 48 obs. of 22 variables
Friendly and Conventional 45.3 47.5 58.8
Temperamental and Uninhibited 57.6 38.6 34.2
Temperamental and Uninhibited 47.0 38.8 36.5
Friendly and Conventional 60.9 50.7 62.7
Friendly and Conventional 63.2 60.0 68.8
Relaxed and Creative 40.7 52.9 44.5
Friendly and Conventional 62.5 48.3 50.9
Friendly and Conventional 48.9 50.2 56.2 Files [iRfotsTj fackagesT) HelpT) Viewer =0
Friendly and Conventional 62.8 56.6 522 $08 New Folder | @ | Detete Blfename @ Moe S
Friendly and Conventional 45.5 48.9 50.8 {'\ Hore > Deskiop > ARTRS Gourse - — X
4 Name Size Modified
Friendly and Conventional 53.4 48.1 51:3 T .
Friendly and Conventional 52.2 49.7 45.0 Rhistory 0B May 26, 2021, 11:48 PM
R AITRS Course.Rproj 205 B May 27, 2021, 12:39 AM
| data
e | doc
| figs
| output

ml R

3. Importing data from SPSS, SAS and
Stata files

The SPSS, SAS and Stata importer provides support to:

Import from the file system or a url
Rename the data set
Specify a model file

Plain-text Files

Plain-text files are one of the most common ways
to save data. They are very simple and can be read
by many different computer programs—even the
most basic text editors. For this reason, public
data often comes as plain-text files. For example,
* (Census Bureau

* Social Security Administration

 Bureau of Labor Statistics all make

All plain-text files can be saved with the extension
txt (for text), but sometimes a file will receive a
special extension that advertises how it separates
data-cell entries. Another text file type would be a
comma-separated-values file and would usually be
saved with the extension .csv.

’read.csv

Files Plots Packages Help Viewer —

@ D 5| 4

R: Data Input ~ Find in Topic

read.table {utils} R Documentation
Data Input

Description

Reads a file in table format and creates a data frame from it, with cases corresponding to lines and variables to fields in the file.

Usage
read.table(file, header = FALSE, sep = "", quote = "\"'",
dec = ".", numerals = c("allow.loss", "warn.loss", "no.loss"),
row.names, col.names, as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#",
allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(),
fileEncoding = "", encoding = "unknown", text, skipNul = FALSE)
read.csv(file, header = TRUE, sep = ",", quote = "\"",
dec = ".", fill = TRUE, comment.char = "", ...)
read.csv2(file, header = TRUE, sep = ";", quote = "\"",
dec = ",", fill = TRUE, comment.char = "", ...)
read.delim(file, header = TRUE, sep = "\t", quote = "\"",
dec = ".", fill = TRUE, comment.char = "", ...)
read.delim2(file, header = TRUE, sep = "\t", quote = "\"",
dec = ",", fill = TRUE, comment.char = "", ...)

Arguments

Read/Import csv file using command

filename <- read.csv(file.choose())
filename

Alternatively

getwd()

setwd("/Users/admin/Desktop/AITRS Course/data")
deck <- read.csv("deck.csv")
deck

Read/Import csv file using command

filename <- read.csv(file.choose())
filename

Alternatively
For Mac-0S

getwd()

setwd("/Users/admin/Desktop/AITRS Course/data")
deck <- read.csv("deck.csv")
deck

For Window

getwd()
setwd(”C:\\Users\\abbas\\Desktop\\AITRS Course\\
deck.csv data")

deck <- read.csv("deck.csv")
deck

read.table

Toload a plain-text file, use read.table. The first argument of
read.table should be the name of your file (if it is in your working
directory), or the file path to your file (if it is not in your working
directory). If the file path does not begin with your root directory, R will
append it to the end of the file path that leads to your working
directory. You can give read.table other arguments as well. The two
most important are sep and header. If the royal flush data set was
saved as a file named poker.csv in your working directory, you could
load it with:

> deck <- read.table("deck.csv", sep =",", header = TRUE)
>

> deck <- read.table("deck.csv", sep =",", header = TRUE)
>

sep

Use sep to tell read.table what character your file uses to separate data entries. Tofind
this out, you might have to open your file in a text editor and look at it. If you don’t
specify a sep argument, read.table will try to separate cells whenever it comes to white
space, such as a tab or space. R won’t be able to tell you if read.table does this correctly
or not, so rely on it at your own risk.

header

Use header to tell read.table whether the first line of the file contains variable names

instead of values. If the first line of the file is a set of variable names, you should set
header = TRUE.

na.strings

Oftentimes data sets will use special symbols to represent missing information. If you
know that your data uses a certain symbol to represent missing entries, you can tell

read.table (and the preceding functions) what the symbol is with the
na.strings argument. read.table will convert all instances of the missing
information symbol to NA, which is R’s missing information symbol

You could read the data set into R and convert the missing values
into NAs as you go with the command:

> deck <- read.table("deck.csv", sep =",", header = TRUE,
na.string=".")
>

skip and nrow

Sometimes a plain-text file will come with introductory text that is not
part of the data set. Or, you may decide that you only wish to read in
part of a data set. You can do these things with the skip and nrow
arguments. Use skip to tell R to skip a specific number of lines before it

starts reading in values from the file. Use nrow to tell R to stop reading
in values after it has read in a certain number of lines.

You can read just the six lines (five rows plus a header) that you want
with:

> deck <- read.table("deck.csv", sep =",", header = TRUE, skip =
3, nrow = 5)

stringsAsFactors

R reads in numbers just as you’d expect, but when R comes across
character strings (e.g., letters and words) it begins to act strangely. R
wants to convert every character string into a factor. This is R’s default
behavior, but | think it is a mistake. Sometimes factors are useful. At
other times, they’re clearly the wrong data type for the job. Also factors
cause weird behavior, especially when you want to display data

Setting the argument stringsAsFactors to FALSE will ensure that R saves
any character strings in your data set as character strings, not factors. To

use stringsAsFactors, you'd write:

> deck <- read.table("deck.csv", sep =",", header = TRUE, stringsAsFactors = FALSE)
>

If you will be loading more than one data file, you can
change the default factoring behavior at the global

level with:
options(stringsAsFactors = FALSE)
This will ensure that all strings will be read as strings,

not as factors, until you end your
R session, or rechange the global default by running:

options(stringsAsFactors = TRUE)

The read Family

R also comes with some prepackaged short cuts for read.table, shown in Table

Function Defaults Use

read.table sep="" header = FALSE General-purpose read function
read.csv sep =",, header = TRUE (Comma-separated-variable (CSV) files
read.delim sep ="\t’, header = TRUE Tab-delimited files

read.csv2 sep =";", header = TRUE, dec =", (CSV files with European decimal format

read.delim2 sep="\t)header=TRUE, dec="" Tab-delimited files with European decimal format

For example:

> deck <- read.csv("deck.csv")
>

Excel File

install.packages("readx!")

Loading
library("readxl")

xlsx files
my_data <- read_excel("StateData.xIsx")

It’s also possible to choose a file interactively using the function file.choose()

my_data <- read_excel(file.choose())

Web Data

install.packages("RCurl")
install.packages("XML")
install.packages("stringr")
install.packages("plyr")

ibrary("RCurl")
ibrary("XML")

ibrary("stringr")
ibrary("plyr")

Read the URL.
url <-"http://www.geos.ed.ac.uk/~weather/jcmb_ws/"

url <-"https://gist.github.com/garrettgman/9629323"

Saving Data

Saving Plain-Text Files

Once your data is in R, you can save it to any file format that R supports.
If you'd like to save it as a plain-text file, you can use the write family of
functions. The three basic write functions appear in Table below. Use
write.csv to save your data as a .csv file and write.table to save your data
as a tab delimited document or a document with more

exotic separators. Table 2. R saves data sets to plain-text
files with the write family of functions

File format Function and syntax

SV write.csv(r_object, file = filepath, row.names = FALSE)
.csv (with European decimal write.csv2(r_object, file = filepath, row.names = FALSE)
notation)

tab delimited write.table(r_object, file = filepath, sep = "\t",

row.names=FALSE)

Before we go any further, let’s save a copy of deck as a new .csv file.
That way you can email it to a colleague, store it on a thumb drive, or

open it in a different program. You can save any data frame in R to a
.csv file with the command write.csv. To save deck, run:

1. You should give write.csv the name of the data frame that you
wish to save

> write.csv(deck, file = "cards.csv", row.names = FALSE)
>

2. you should provide a file name to give your file. R will take this
name quite literally, so be sure to provide an extension.

Finally, you should add the argument row.names = FALSE. This will
prevent R from adding a column of humbers at the start of your

data frame. These numbers will identify your rows from 1 to 52, but
it is unlikely that whatever program you open cards.csv in will
understand the row name system. More than likely, the program will
assume that the row names are the first column of data in your data
frame. In fact, this is exactly what R will assume if you reopen
cards.csv. If you save and open cards.csv several times in R, you'll
notice duplicate columns of row numbers forming at the start of
your data frame. | can’t explain why R does this, but | can explain
how to avoid it: use row.name = FALSE whenever you save data with

write.csv.

Saving your work
You have several options for saving your work:

* You can save individual variables with the save() function.

* You can save the entire workspace with the save.image() function.

* You can save your R script file, using the appropriate save menu
command in your code editor.

Suppose you want to save the value of yourname. To do that, follow
these steps:

1.Find out which working directory R will use to save your file by
typing the following:

> getwd()

[1] “c:/users/andrie”

The default working directory should be your user folder. The exact
name and path of this folder depend on your operating system.

Important Hint: If you use the Windows operating system, the path is
displayed with slashes instead of backslashes.

2.Type the following code in your console, using a filename like
yourname.rda, and then press Enter.

> save(yourname, file="yourname.rda”)

R silently saves the file in the working directory. If the operation is
successful, you don’t get any confirmation message.

3.To make sure that the operation was successful, use your file
browser to navigate to the working directory, and see whether the
new file is there.

2. Data Manipulation

Vector List
Data Manipulation in R can be carried out for further analysis and visualisation. [EEE
Matrix Data frame
Let us see a few basic data structures in R: DDD
1. Vectors in R- 1-dimensional data. %
Types — integer, numeric, logical, character, complex.

2. Matrices in R- These are rectangular collections of elements and are useful when all data is of a single class that
is numeric or characters. Dimensions — two, three, etc.

3. Lists in R- These are ordered containers for arbitrary elements and are used for higher dimension data, like
customer data information of an organization

4. Data Frames- These are two-dimensional containers for records and variables and are used for
representing data from spreadsheets etc. It is similar to a single table in the database.

5. Arrays- While matrices are confined to two dimensions, arrays can be of any number of dimensions.
The array function takes a dim attribute which creates the required number of dimension

Sample() command in R

As we have seen, samples are created from data for analysis. To create samples, sample() command is used and the
number of samples to be drawn are mentioned.

For example, to create a sample of 10 simulations of a die, below command is used:

> sample(1:6, 10, replace=TRUE)
[114142551234

>
sample() should always produce random values but it does not happen with the test code sometimes. If

substituted with a seed value, the sample() command always produces random samples.

The seed value is the starting point for any random number generator formula. Seed value defines both, the
initialization of the random number generator along with the path that the formula will follow.

Let us see how seed value is used: Hint: Computers don’t generate truly random numbers—they
are deterministic, which means that they operate by a set of
rules. You can mimic randomness by specifying a set of rules. For
example, “take a number x, add 900 +x, then subtract 52.” In
order for the process to start, you have to specify a starting
number, x (the seed). Let’s take the starting number 77:

> set.seed(100)

> sample(1:5, 10, replace = TRUE)
[112312442325

>

https://www.statisticshowto.com/deterministic/

Adding Calculated Fields to Data

R makes it easy to perform calculations on columns of a data frame because each column is itself a vector.

We will see how to calculate the ratio between the lengths and width of the sepals.
The command for the same is:

> data(iris)

> X <- irisSSepal.Length / irisSSepal . Width

> head(x)

[1] 1.457143 1.633333 1.468750 1.483871 1.388889 1.384615
>

Creating Subgroups or Bins of Data

Most statisticians often draw histograms to investigate their data. As this type of calculation is common when you
use statistics, R has some functions for it

1. cut() function in R

cut() function groups values of a variable into larger bins. It creates bins of
equal size and classifies each element into its appropriate bin.

Let us see how cut works in R with an example:

> frost <- ¢(1,2,3)

> cut(frost, 3, include.lowest=TRUE)

[1] [0.998,1.67] (1.67,2.33] (2.33,3]

Levels: [0.998,1.67] (1.67,2.33] (2.33,3]

> cut(frost, 3, include.lowest=TRUE, labels=c("Low", "Med", "High"))
[1] Low Med High

Levels: Low Med High

merge() Function in R

Let’s see the use of merge() function.
The merge() function is used to combine data frames. Let us see this with an example: every.states

Try to run this code

every.states <- as.data.frame(state.x77)
every.statesSName <- rownames(state.x77)
rownames(every.states) <- NULL
str(every.states)

#Creating a subset of freezing states

freezing.states <- every.states[every.statesSFrost>150
, ¢("Name", "Frost")]

freezing.states

#Creating a subset of big states

big.states <- every.states[every.statesSArea>=100000
, ¢("Name", "Area")]

big.states

#Using the merge function
merge(freezing.states, big.states)

Results

> every.states <- as.data.frame(state.x77)

> every.statesSName <- rownames(state.x77)

> rownames(every.states) <- NULL

> str(every.states)

'data.frame’: 50 obs. of 9 variables:

S Population: num 3615 3652212 211021198 ...
Slncome :num 36246315 453033785114 ...

S llliteracy: num 2.11.51.81.91.10.71.1091.32...
S Life Exp : num 69 69.3 70.570.7 71.7 ...

S Murder :num 15.111.37.810.110.36.83.16.2
10.7 13.9 ...

SHS Grad :num 41.366.7 58.139.9 62.663.9 56 54.6
52.640.6 ...

S Frost :num 20152 156520166 1391031160 ...
SArea :num 50708 566432 113417 51945 156361 ...
S Name :chr "Alabama" "Alaska" "Arizona"
"Arkansas" ...

> ##Creating a subset of freezing states
> freezing.states <- every.states[every.statesSFrost>150
+ , ¢("Name", "Frost")]
> freezing.states
Name Frost
2 Alaska 152
6 Colorado 166
19 Maine 161
23 Minnesota 160
26 Montana 155
28 Nevada 188
29 New Hampshire 174
34 North Dakota 186
41 South Dakota 172
45 Vermont 168
50 Wyoming 173

> ##Creating a subset of big states
> big.states <- every.states[every.statesSArea>=100000
+ , ¢("Name", "Area")]
> big.states
Name Area
2 Alaska 566432
3 Arizona 113417
5 California 156361
6 Colorado 103766
26 Montana 145587
28 Nevada 109889
31 New Mexico 121412
43 Texas 262134

> #Using the merge function

> merge(freezing.states, big.states)
Name Frost Area

1 Alaska 152 566432

2 Colorado 166 103766

3 Montana 155 145587

4 Nevada 188 109889

Sorting and Ordering Data in R using sort() and
order() in R

A common task in data analysis and reporting is sorting information. You can answer many
everyday questions with sorted tables of data that tell you the best or worst of specific things;

Let’s first create data frame and then we will sort it. Then, we will use some.states command to create a data fram

some.states <- data.frame(Region = state.region, + state.x77)

some.states <- some.states[1:10, 1:3]

sort(some.statesSPopulation) #Command to sort Population in ascending order

sort(some.statesSPopulation, decreasing=TRUE) #Command to sort Population
#in descending order

order.pop <- order(some.statesSPopulation) #Another way of sorting

some.states[order.pop, | #In ascending order

order(some.statesSPopulation, decreasing=TRUE) #Descending Order

Results

> some.states <- data.frame(Region = state.region, + state.x77)
> some.states <- some.states[1:10, 1:3]
> sort(some.statesSPopulation) #Command to sort Population in ascending order
[1] 365 579 2110 2212 2541 3100 3615 4931 8277 21198
> sort(some.statesSPopulation, decreasing=TRUE) #Command to sort Population
[1] 21198 8277 4931 3615 3100 2541 2212 2110 579 365
> #in descending order
> order.pop <- order(some.statesSPopulation) #Another way of sorting
> some.states[order.pop,] #In ascending order
Region Population Income
Alaska West 365 6315
Delaware South 579 4809
Arkansas South 2110 3378
Arizona West 2212 4530
Colorado West 2541 4884
Connecticut Northeast 3100 5348
Alabama South 3615 3624
Georgia South 4931 4091
Florida South 8277 4815
California West 21198 5114
> order(some.statesSPopulation, decreasing=TRUE) #Descending Order
[11 5910176 3482
>

3. The Machine Learning Part

In case you are new to statistics, there are some very solid sources that
explain the basic concepts while making use of R:

- _Andrew Conway’s Introduction to statistics with R (online interactive coding course)

https://www.datacamp.com/tracks/learn-statistics-with-r

* Furthermore there are some very interesting blogs to kickstart your
Machine Learning https://www.datacamp.com/community/tutorials/machine-learning-in-r

* Good Book An Introduction to Machine Learning with R
https://lgatto.github.io/IntroMachineLearningWithR/index.html#caution

« Google crash course in Machine Learning

https://developers.google.com/machine-learning/crash-course/descending-into-ml/video-lecture

https://www.datacamp.com/tracks/learn-statistics-with-r
https://www.datacamp.com/introduction-to-statistics?tap_a=5644-dce66f&tap_s=14201-e863d5
https://www.datacamp.com/community/tutorials/machine-learning-in-r
https://developers.google.com/machine-learning/crash-course/descending-into-ml/video-lecture
https://lgatto.github.io/IntroMachineLearningWithR/index.html

4. Data Visualization

If you want to get started with visualizations in R, take some time to study the ggplot2 package. One of
the (if not the) most famous packages in R for creating graphs and plots. ggplot2 is makes intensive use of
the grammar of graphics, and as a result is very intuitive in usage (you're continuously building part of
your graphs so it's a bit like playing with lego). There are tons of resources to get your started such as

this

https://www.datacamp.com/courses/data-visualization-with-ggplot2-1?tap_a=5644-dce66f&tap s=14201-
e863d5

Besides ggplot2 there are multiple other packages that allow you to create highly engaging graphics and that
have good learning resources to get you up to speed. Some of our favourites are:
» govis for interactive web graphics

http://ggvis.rstudio.com/

» googleVis to interface with google charts.
https://developers.google.com/chart/interactive/docs/gallery
« Plotly for R

https://plotly.com/r/

https://cran.r-project.org/web/packages/ggplot2
http://www.springer.com/gp/book/9780387245447
https://www.datacamp.com/courses/data-visualization-with-ggplot2-1?tap_a=5644-dce66f&tap_s=14201-e863d5
http://ggvis.rstudio.com/
http://ggvis.rstudio.com/
https://github.com/mages/googleVis
https://developers.google.com/chart/interactive/docs/gallery
https://plot.ly/r/
https://plotly.com/r/

5.Reporting your results

One of the best way to share your models, visualizations, etc is through
dynamic documents.

https://rmarkdown.rstudio.com/

(based on knitr and pandoc) is a great tool for reporting your data analysis in
a reproducible manner though html, word, pdf, ioslides, etc. This 4 hour
tutorial on https://www.datacamp.com/courses/reporting-with-r-
markdown?tap_a=5644-dce66f&tap_s=14201-e863d5

explains the basics of R markdown. Once you are creating your own
markdown documents, make sure
https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-
cheatsheet.pdf

is on your desk.

http://rmarkdown.rstudio.com/
https://cran.r-project.org/web/packages/knitr
http://pandoc.org/

Big Data Types

Big Data Types

Variety is one of the principles of Big Data as

described previously. The Big Data can be divided
into three types:

(1) Structured Data,
(2) Semi-Structured Data, and
(3) Unstructured Data

(1) Structured Data

Structured data generally refers to data that has a defined length and format. Most
organizations are storing large amounts of structured data in various divisions, in
normalised/deformalised formats in a database: Data warehouses, relational
database management system (RDMSs), and various other environments.

The data can be queried using a language like structured query language (SQL) in
which the datasets can be updated with new data, and deleted, read or any other
activity. The evolution of technology provides newer sources of structured data
being produced - often in real time and in large volumes. The sources of data are
divided into three categories:

(i) Computer- or Machine-Generated Structured Data:

 Sensor data

* Web log data

* Point-of-sale data:
* Financial data

(if) Human-Generated Data:

* Input data
* Click-stream data
 Gaming-related data

Example of Structure d Data:
Simple Invoices Tab lesfrom Northwind

Acce ss' s Datash eetviewof an Invoices table ,which isbase dontheNorthwind. mdbsa mpled at abase' s
Ord ers table.The Invo ice Nofieldisthe primary key. Valuesinthe Ord erl D, Custom e 1l D, Em ployee 1D,
and Shipperl Dfields re late to primary key val ues in Nort hwind' s Ord ers, Custom e rs, Em pl oye es, and
Shi ppe rstabl es.Afieldthat cont ain s value sequal othoseo fprim ary keyvalues inothe rtables is calle
da fore ign key [fie Id].

Th issim ple Invoices t abl ewas cre at ed from t he No rthw ind Ord ers t able and d oe sn' t take adv ant age
of Access's e xtende dpro perties,suchasthe fie Id captio ns, lookup fields, and subdat asheets int he Dat
ash eet viewof t heOrd ers t able.

Foreign fields
Primary key
O.Stm-ajo .
mroile o - rQedO « Em)Oy ID + OrOeiOate « Reflulre<loate * ,11 ppe<!Dale ° siilpvii « =1 FIEIdS
100000100 10J56 WA DK 6 11/1a/2005 12/16/20 U/21/200'5 2
100000U0 03.57 LIIAS 1 05
1000001 _1 0?.581AMAI s 1/1.9/2005 2/17/200 1"l/,/2r!os 3
1000001 2 03.59 SEVES S 5
1000001 3 OMOBIO P 11/20/200} 2/11/200S 1 /272005
10000011 10361 QUIO< 1 11/112005 U/19/2005 1 /26/2008 3
100000115 10362 BO P 3 11/122005 U/'Z<J/200 2/2/2005 3
100000116 10363 DRACO 4 5
100000117 103.M EASIC 117122005 U/20/100 12/3/2005 2
100000118 1036:S A ON 3 S
L0D0001 10 10366 GALIO g 11252005 12/23/§§ 11/28/2005 1
100000120 10367 !JAFFE 7
11/26/1-00S, 12/24/20, L2000, 3
100000121 0368 FR SH > Records
100000122 103,69 SPUR 8 0S
OCNK 0D 0570 CHOPS . 11/26/1:00S 1/7/2006 12/ /2005 1
i i 1W/V/21If]S 2
100000 24 10371 IAMAL S . 12”/(2)(5 1{2};%%2)((); ’
100000125 0372 QUEEN s e
11/2%9 2/M/2 £ 11/2/2005 3
100000126 4 &)% 1 2/2%(1)6 12/11/2005 3
h il -Uu,, - "
Rocd S 17455 275005 2bos 2
== : 2005 e

. 1222005 12/¥]/2r0 1'1/'9/2005 2
Sourc e: Relational-Database Journal 5

i RaWioWAR] L1100 L2000 o)
- smmmam - .

(2) Semi-Structured Data

Semi-structured data is a kind of data that falls between structured and
unstructured data. This type of data became a talking point. Mostly data coming
from Facebook, Twitter, Blogs, publically available websites, etc. makes the basis
of semi-structured data. These data sources usually have defined structures and
mostly contain text information. The free flow text generated through the social
media is the only unstructured component whilst the remaining data is
structured.

Most of the times, the social data is mistaken with unstructured data. The social
data is NOT unstructured data, it is semi-structured and in fact, some of the
social data contains industry standard structures. Social media data: This data is
generated from the social media platforms such as YouTube, Facebook, Twitter,
LinkedIn, Posts, Favourites, Sentiment, and Flickr, etc. This creation data process
or the process of gathering social media data is normally called “mining”.

Example of Sem i-Stru ctured Data:
GoogleTrends: A Web-Based To o Ifor Real-Time Surve illance of Disease Outbreaks

Google FluTre nds can de t ec t re gonalout brea ksof influe nza7-10days befo re conv en tionalCenters forDi
saeCont rol and Preven timsurve illance systems. We describe t he Google Tre nd s t oo Lexplain how t he dat
a are process ed, prese ntexamples and discuss itsstrengthsand limitat ions. Goo gle

Tre nd s s hows greatpromise & atimely, ro bust, and sens itive su rve illance syste m. Itisbest usedfo r
surveillance of e pidemics and dissases with high prevaknces and iscurr ently better suited to track
disease activity ind eve loped cou ntriesbeca usetobe m o st effe ct ive, itrequ ire s large po pu latons of Web
sea rch use rs. Spikes in sea rch volumeare currentlyhardto interpret but have the be nefitof

increas ing vigilance. Google should work withpublichealthca re prac titionerstodeve lop specia lized tools
us ing Goo gle Flu Tre nds as ablueprint, to trac kinfect iousd s @& s Suitable We bsearch query

proxies fordise ases needtobe esta blished for spec ialized toolsorsyndromicsurve illance. Thisunique
andinnovat ive tec hnology t akes us onestep closerto true rea Ftime ou tbrea ksurve illance. Goo gle Flu
Tre nds We b t oo lint erface (ava ilabl eat htt ps :/ / www .goog le.com/ tre nds/ e xp lore? g=flutre nds).

un iRamote) P

Lo Location (URL) B . -1l
ek
Enter variables Google _.. o =L t
GO()8£ T News Reference Iy !
e Volume graph ceoun
Search Volume — o ooy
Scale in based on the sverage workdwide trafc of flu in o years Leam mone Indexgraph]

On 200L Select region and timeframe

etV Mo 20 v

@ Denominator for scaling
e ¥ e S
Ih

MM

PeBW-11e..-,wa' .
A o 205 + - - - - Google News Headlines
__‘_f'\'f\‘) b Ble?2M1Q'itrih . w.-..ru
' m [s | ot 5

' DAOIMIIC ="

AJMWW IR MDY

¢ .,. select denomi nator for

Fl UNUSA

s ossesee cee tJ;USA
]
DC.USA
’
rsi..-.2.0....,,..

Top Regions, Cities , Languages

]
"_
WA, Bargraphs

Expost thes page as 3 C5V e

1-.al.11-1e..a.e.:,,..
Linkto export .csv file

Figure (1): Goo gle Tre nds output for Web search queres for the term "flu" wo rldwide from January
2004 to March 2009.

Reference : Herma n Anthony Carn e iro, a nd Eefth e riosMy lon akis, "Googl eTre nds: AWe b- Based Too [o1 Rea
I-Time Surve illance of Dis ease Out brea ks" SURFINGTHEW EB ¢ CID 2009 :4 9 (15 Nove mbe 1) ¢
1557 -1565 (20 16)

(3) Unstructured Data

Unstructured data does not have any defined, consistent fields and it may even do
not have any numbers and text. Unstructured data can be divided also into either
machine generated or human generated and described as flows:

(i) Machine-Generated Unstructured Data Examples:
» Satellite images

 Scientific data

* Photographs and video

e Radar or sonar data

(iif) Human-generated Unstructured Data Examples:
* Mobile and Voice data

 Web behavior and content

* Image and Video Data

* Machine Data

Creating Subsets of Data in R

The process of creating samples is called subsetting. Different methods of subsetting in R are:

1.5

The dollar sign operator selects a single element of data. The result of this operator is always a vector when we
use it with a data-frame.

2. ([

Similar to S in R, the double square brackets operator in R also returns a single element, but it offers the
flexibility of referring to the elements by position rather than by name. It can be used for data frames and lists.
3. [

The single square bracket operator in R returns multiple elements of data. The index within the square brackets
can be a numeric vector, a logical vector, or a character vector.

For example: To retrieve 5 rows and all columns of already built-in dataset iris, the below command, is

used: > data(iris)
> 1rts{l1:5. |

Sepal.Length Sepal .Width Petal.Length Petal .Width Species

1 5.1 (3 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 123 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

S 5.0 3.6 1.4 0.2 setosa

Example of Unstructured Data
Sate llite data Exam pie [7]

The use of satellites to predict weather is well known. But satellite data can also map differences
in the Earth's surface so precisely that we can calculate how much water is stored in even the
most isolated of aquifers (Sullivan, 2015L or analyse the quality of soil (Lenhardt, 2015).

Light emissions picked up by satellites are also being used to proxy poverty levels and track
GOP growth to supplement national accounting in d ata-poor countries (Henderson et al.,
2012).

In Indonesia, researchers have used data on electrification and economic growth for 5,000
sub-districts in Indonesia between 1992 and 2008 (Oliviaet al 2014).

i !-" weee o . .,aC W weo'wee 'we .0,lni10 toO0 1Mo0Q; uo - -= W ° 0 ‘:,0 ip'cto’'o 110 eoly ' . DY) _,Wo e
9

&
6 \ -’0.

[1] \
o m 9

)
=

b
an i
S3ee 10

y }

[)
B3888: sK58
L R L E R & &

&

~

N m

Figure (2): An example of raw and postprocessed satellite data. (Left) Alo ng -track satellite
observations of sea surface height from the JASON-II satellite for May 20, 2010. (Middle) A 12-
day composite of five satellites centered on May 20, 2010. (Right) The postprocessed data from
May 20, 2010. The altimeter products were produced by Ssalto/Duacs and distributed by
AVISO, with support from CNES (www .aviso.oce ano bs.com/duacs/).

Ref erence: James H. Faghmous, and Vipin Kumar/' A Big Data Guide to Understanding Climate
Change: The Case for Theory-Guided Data Sciencen, BigData. 2(3): 155- 163 (2014).

http://www.aviso.oceanobs.com/duacs/)

Thank you

