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Why Learn R?



• R -the programming language favored by many statisticians because
facilitate matrix arithmetic - carrying out complex, often automated
calculations on data which is held in a grid of rows and columns.

• Named from the initials of the two men who first developed the  
language at Dept. of Statistics of University of Auckland, New Zealand  
during 1990s, Robert Gentleman and Ross Ihaka.

• R is very good for creating programs which can carry out calculations  
on these datasets, even when the datasets are constantly growing
in size at an ever-increasing rate, and producing real-time  
visualizations based on this data.



• R is a computer programming language which is particularly well  
suited to handling and sorting the large datasets associated with Big  
Data projects.

• The software environment used to create code in R is open sourced,  
meaning it is free to download, anyone can use it, and there is a  
plethora of guidance and advice available on how to use it most  
effectively.

• R designers realized that visualization was key to being able to  
understand the complex datasets that are being explored,  
incorporated functionality to translate data into charts, graphs and  
complex multi-dimensioned matrices - as well as many user-defined  
methods of visualization - into its core.



• Online, R code is everywhere although you won't see it, as it's  
always hidden behind pretty graphical interfaces. But when you  
use Google, Facebook or Twitter you are almost certainly executing  
R code running on the servers of those organizations.

• It is also capable of executing code written in other languages such  
as C++ or Java, so resources coded in those languages can be made  
available. Because it can be compiled to run on any major operating  
system, R code can easily be ported between Unix, Windows or  
Mac environments.

• With a reported more than two million users worldwide, and  
thousands of deployed applications created using it, R is  
undoubtedly one of the backbone technologies of the Big Data  
revolution.





Benefits of Using R
Here are some benefits I found after using R:
• The style of coding is quite easy.
• It’s open source. No need to pay any subscription charges.
• Availability of instant access to over 17649 packages

customized for various computation tasks.
• The community support is overwhelming. There are  

numerous forums to help you out.
• Get high performance computing experience ( require

packages)
• One of highly sought skill by analytics and data science  

companies.



Things R does and What R does not do

R does R does not
• Data handling and storage: numeric,  

textual
• Matrix algebra
• Has tables and regular
• Expressions
• high-level data analytic and statistical  

functions
• classes (“Object Oriented”)
• Graphics
• programming language: loops,

branching, Subroutines

• Is not a database, but connects to  
DBMSs

• has no graphical user interfaces,  
however it connects to Java, TclTk and  
it has R Studio

• language interpreters are not fast.  
However, R could be extended by  
compiled C/C++ code

• No spreadsheet view of data, but  
connects to MS Excel.

• No professional / commercial Support
but you can use help



A world map of R user activity



• Packaging: a crucial infrastructure to efficiently produce, 
load and keep consistent software libraries from (many) 
different sources / authors

• Most R packages deal with statistics and data analysis
• Many statistical researchers publish their state of the art

methods as R packages.
• Comprehensive R Archive Network (CRAN) is a place where

you can fetch those packages for free. You can get truly 
powerful tools at CRAN, you can find them at this link:      

https://cran.r-project.org/

Statistical Packages

https://cran.r-project.org/


Looking At Some of the Unique Features of R
1. Performing multiple calculations with vectors

R is a vector-based language. You can think of a vector as a row or column of numbers or text.  
The list of numbers {1,2,3,4,5}, for example, could be a vector. Unlike most other programming  
languages, R allows you to apply functions to the whole vector in a single operation without  the 
need for an explicit loop. We’ll illustrate with some real R code. First, we’ll assign the values 1:5 
to a vector that we’ll call x:
> x <- 1:5
> x
[1] 1 2 3 4 5
Next, we’ll add the value 2 to each element in the vector x and print the
result:
> x + 2
[1] 3 4 5 6 7
You can also add one vector to another. To add the values 6:10 element-wise  to 
x, you do the following:
> x + 6:10
[1] 7 9 11 13 15

To do this in most other programming language would require an explicit loop
to run through each value of x.



2. Processing more than just statistics
R was developed by statisticians to make statistical processing easier. This heritage continues,
making R a very powerful tool for performing virtually any statistical computation.
The result is that R is now eminently suitable for a wide variety of nonstatistical tasks,  
including
Data processing,
Graphic visualization,
and analysis of all sorts
R is being used in
The fields of finance,
Natural language processing,  
Genetics,
Biology,
Market research, to name just a few

Which means that you can  
use R alone to program  
anything you want

Looking At Some of the Unique Features of R



3. Running code without a compiler

R is an interpreted language, which means that — contrary to  
compiled languages like C and Java — you don’t need a compiler  
to first create a program from your code before you can use it

Looking At Some of the Unique Features of R

The days of commercial statistical languages and packages such 
as SAS, Stata and SPSS are over,"



The days of 
commercial 
statistical 
languages and 
packages such 
as SAS, Stata
and SPSS are 
over.

Any questions



How to install R and R Studio ?



Install R 



To install R on your computer (legally for free!), go to the home website of R 
Download R of Windows, Mac-OS or Linux from

1. Click download CRAN in the left bar
2. Choose a download site (normally 0-cloud) https://cloud.r-project.org/
3. Choose Windows as target operation system
4. Click base
5. Choose Download R 4.1.0 for Windows (86 megabytes, 32/64 bit) and
6. Choose default answers for all questions

Install R 

https://www.r-project.org/

and do the following (assuming you work on a windows/Mac-OS computer):

https://cloud.r-project.org/
https://www.r-project.org/


• Download R of Windows, Mac-OS or Linux from
http://cran.r-project.org/

• If you like command line interface, you do not need  more than that. 

Install R  

http://cran.r-project.org/


There are a lot of options for running R on your computer. Now, when you install R, it does have its own 
app, and you can open that and you can run commands.

This is one way to 
go.
I actually don't 
use this one very 
often,
because it opens 
up several 
different windows
and also because 
the keyboard 
commands



Environment for R



• If you prefer an integrated development environment (IDE), an IDE normally 
consists of a source code editor, build automation tools and a debugger. Most 
modern IDEs have intelligent code completion. download R Studio from  
http://www.rstudio.com

• You will keep on fetching packages (libraries) from the CRAN
http://cran.r-project.org/ site.

• Run R installation first, then install R Studio. That is all.

• When we use R, we will use R Studio, except in rare circumstances.

Install R Studio

http://www.rstudio.com/
http://cran.r-project.org/


1.Click Download RStudio
2.Click Download RStudio Desktop
3.Click Recommended For Your System
4.Download the .exe file and run it (choose default answers for all 

questions)

Install R Studio
To install RStudio, go to:

http://www.rstudio.com

And do the following (assuming you work on a windows computer):

http://www.rstudio.com/


http://www.rstudio.com/Step#1

http://www.rstudio.com/


Step#2



Step#3



R Studio



Navigating the RStudio Environment  



R-Console

R-Script
R environment- command 
history and existing 
variables

Displays Graphical 
Results Output and Help 
pages



Let’s quickly understand the interface of R Studio:

R Console: This area shows the output of code you run. Also, you can directly  
write codes in console. Code entered directly in R console cannot be traced later.  
This is where R script comes to use. Hint : Ctl l to clear the screen of the Console.  
R Script: As the name suggest, here you get space to write codes. To run those  
codes, simply select the line(s) of code and press Ctrl + Enter. Alternatively, you  
can click on little ‘Run’ button location at top right corner of R Script.
R environment: This space displays the set of external elements added and  
command history and existing variables. This includes data set, variables, vectors,  
functions etc. To check if data has been loaded properly in R, always look at this  
area.
Graphical Output: This space display the graphs created during exploratory data  
analysis. Not just graphs, you could select packages, seek help with embedded R’s  
official documentation. Hit Help tab to get to the main help page.



You can run R using a number of text editors or “integrated development  
environments” (IDEs). Most people prefer some other application than R’s native  
environment, which provides only limited functionality in terms of syntax  
highlighting, auto-completion, and debugging. Alternatives include RStudio and
Emacs/ESS. I very much prefer the latter, but if you’ve never programmed before I  
would go with RStudio (installation instructions here; note that you need both R  
and RStudio).

All IDEs include a console and a text editor. The console is where you’ll see the  
results (or output) of commands executed from the editor. You can type commands  
directly into the console, but this is generally not a good strategy. This is because  
the whole purpose of writing code is to make it reproducible. Typing commands in  
the text editor will let you come back to them later as long as you save them (using  
extension .R).

Hint in running R



5. Packages and Help Pages



• Packaging: a crucial infrastructure to efficiently produce, load and
keep consistent software libraries from (many) different sources /
authors

• Most R packages deal with statistics and data analysis
• Many professors, programmers, and statisticians use R to design  tools 

that can help people analyze data. They then make these tools  free for 
anyone to use. To use these tools, you just have to download  them. They 
come as preassembled collections of functions and  objects called
packages

• Comprehensive R Archive Network (CRAN) is a place where  
you can fetch those packages for free. You can get truly power 
powerful tools at CRAN. you can find them at this link: 
https://cran.r-project.org/

Statistical Packages

https://cran.r-project.org/


Click

https://cran.r-project.org/

https://cran.r-project.org/






Important: Install packages from (almost) anywhere The
devtools R package makes it easy to install packages from
locations other than the CRAN website. devtools provides
functions like install_github, install_gitorious,
install_bitbucket, and in stall_url. These work similar to
install.packages, but they search new locations for R
packages. install_github is especially useful because many R
developers provide development versions of their packages
on GitHub. The development version of a package will
contain a sneak peek of new functions and patches but may
not be as stable or as bug free as the CRAN version.



Important: What’s the best way to learn about R packages?
It is difficult to use an R package if you don’t know that it exists. You could
go to the CRAN website and click the Packages link to see a list of available
packages, but you’ll have to wade through thousands of them. Moreover,
many R packages do the same things. How do you know which package
does them best? The R-packages mailing list is a place to start. It sends out
announcements of new packages and maintains an archive of old
announcements. Blogs that aggregate posts about R can also provide
valuable leads. I recommend www.r-bloggers.com[R-bloggers]. RStudio
maintains a list of some of the most useful R packages in the Getting
Started section of http://support.rstudio.com. Finally, CRAN groups
together some of the most useful—and most respected—packages by
subject area. This is an excellent place to learn about the packages
designed for your area of work.

http://www.r-bloggers.com/
http://support.rstudio.com/


How to install R packages?



As a first time user, a pop might appear to select your CRAN mirror  
(country server), choose accordingly and press OK.
Note: You can type this either in console directly and press ‘Enter’ or
in R script and click ‘Run’.

Installing Packages:
The sheer power of R lies in its incredible packages. In R, most data  
handling tasks can be performed in 2 ways: Using R packages and R  
base functions. In this course, I’ll also introduce you with the most  
handy and powerful R packages. To install a package, simply type:

install.packages("package name")



Loading Packages:

library(package name)

Installing a package doesn’t immediately place its  
functions at your fingertips. It just places them on your  
computer. To use an R package, you next have to load it  
in your R session with the command:



Updating R Packages:

For example if you already have ggplot2, reshape2, and
dplyr on your computer, it’d be a good idea to check for
updates before you use them:

update.packages(c("ggplot2", "reshape2", "dplyr"))



Install.packages
Each R package is hosted at http://cran.r-project.org, the same website
that hosts R.

However, you don’t need to visit the website to download an R package;  
you can download packages straight from R’s command line. Here’s how:

1. Open RStudio.
2. Make sure you are connected to the Internet.
3. Run install.packages(“ggplot2") at the command line (console)

http://cran.r-project.org/


Example of Packages

We’re going to use the qplot function to make some  
quick plots. qplot comes in the ggplot2 package, a  
popular package for making graphs. Before you can use  
qplot, or anything else in the ggplot2 package, you  
need to download and install it.



Do you want to install from sources the packages which need  
compilation?
y/n: y

> install.packages("ggplot2")
also installing the de. pendencies 'stringi', 'magrittr',  
'colorspace', 'Rcpp',.'stringr', 'RColorBrewer', 'dichromat',  
'munsell', 'labeling',.'assertthat', 'digest', 'gtable', 'plyr',  
'reshape2', 'scales', 'tibble', 'lazyeval'



Library
Installing a package doesn’t place its functions at your  
fingertips just yet: it simply places them in your hard  
drive. To use an R package, you next have to load it in your  
R session with the command library("ggplot2"). If you  
would like to load a different package, replace ggplot2  
with your package name in the code.



Package that brings in a whole 
bunch of other packages with it

Example important Package is 
The tidyverse

These  packages are for data 
science to make you work easier, 
and more efficient 



Packages

tidyverse website





All Packages within tidyverse Package



Exploring R (Examples)



Exploring R
To open RStudio, click the RStudio icon in your menu system or on your desktop,
Once RStudio started, choose File⇒New⇒R Script.
Source: The top-left corner of the screen contains a text editor that lets you work with source script files. Here, you  
can enter multiple lines of code, save your script file to disk, and perform other tasks on your script. This code  
editor works a bit like every other text editor you’ve ever seen, but it’s smart. It recognizes and highlights various  
elements of your code, for example (using different colors for different elements), and it also helps you find  
matching brackets in your scripts.
Console: In the bottom-left corner, you find the console. The console in Rstudio is identical to the console in RGui  
This is where you do all the interactive work with R.
Workspace and history: The top-right corner is a handy overview of your workspace, where you can inspect the  
variables you created in your session, as well as their values. This is also the area where you can see a history of the  
commands you’ve issued in R.
Files, plots, package, and help: In the bottom-right corner, you have access to several tools:

• Files: This is where you can browse the folders and files on your computer.
• Plots: This is where R displays your plots (charts or graphs). We discuss plots in
• Part V.
• Packages: This is where you can view a list of all the installed packages. A package is self-contained set of  

code that adds functionality to R, similar to the way that an add-in adds functionality to Microsoft Excel.
• Help: This is where you can browse the built-in Help system of R.



Starting Your First R Session

Start a new R session, type the following in your console, and press  
Enter:
> print(“Hello world!”)
R responds immediately with this output:
[1] “Hello world!”

Doing simple math

Type the following in your console to calculate the sum of five numbers:
> 1+2+3+4+5
[1] 15



Using vectors
A vector is the simplest type of data structure in R. To construct
a vector, type the following in the console:
> c(1,2,3,4,5)  
[1] 1 2 3 4 5
In constructing a vector, you tell the c() function to construct a vector  
with the first five integers. The entries inside the parentheses are  
referred to as arguments.

One very handy operator is called sequence, and it looks like a colon (:).  
Type the following in your console:
> 1:5
[1] 1 2 3 4 5



Type the following in your console to calculate the sum of this  
vector:
> sum(1:5)  
[1] 15

Storing and calculating values

A much more useful capability is storing values and then doing  
calculations on these stored values.
Try the following:
> x <- 1:5
> x
[1] 1 2 3 4 5



In these two lines of code, you first assign the sequence 1:5 to a
variable called x. Then you ask R to print the value of x by typing
x in the console and pressing Enter.

Hint: In R, the assignment operator is <-, which you type in the console
by using two keystrokes: the less-than symbol (<) followed by a hyphen
(-). The combination of these two symbols represents assignment



In addition to retrieving the value of a variable, you can do calculations on that  
value. Create a second variable called y, and assign it the value 10. Then add the  
values of x and y, as follows:
> y <- 10
> x + y
[1] 11 12 13 14 15
The values of the two variables themselves don’t change unless you assign a new
value. You can check this by typing the following:
> x
[1] 1 2 3 4 5
> y  
[1] 10
Now create a new variable z, assign it the value of x+y, and print its value:
> z <- x + y
> z
[1] 11 12 13 14 15



Variables also can take on text values. You can assign the value 
“Hello” to a  variable called h, for example, by presenting the 
text to R inside quotation marks,  like this:

Hint: You must present text or character values to R inside quotation  
marks — either single or double. R accepts both. So both h <- “Hello”  
and h <- ‘Hello’ are examples of valid R syntax

> h <- “Hello”
> h
[1] “Hello”



In “Using vectors,” earlier in this chapter, you use the c() function to
combine numeric values into vectors. This technique also works for
text. Try it:
> hw <- c(“Hello”, “world!”)
> hw
[1] “Hello” “world!”

You can use the paste() function to concatenate multiple text elements.  
Bydefault, paste() puts a space between the different elements, like  
this:

> paste(“Hello”, “world!”)
[1] “Hello world!



Piping commands with %>%



The piping commands character with %>%, which is included as part 
as the Tidyverse.

Let me give you an example of command and how you would write 
it in base R. Base R uses nested commands, which mean you start in 
the middle and you go out.

R is a functional language, which means that your code often 
contains a lot of parenthesis, ( and ). When you have complex code, 
this often will mean that you will have to nest those parentheses 
together. This makes your R code hard to read and understand. 
Here's where %>% comes in to the rescue!

> round(exp(diff(log(x))), 1)



How Pipes %>%  Work 

f3(f2(f1(data,arg1), arg2),arg3)

data %>% 
f1(arg1) %>%
f2(arg2) %>%
f3(arg3)  

Old

New Pipes command %>% 



Typical example, which is a typical example of nested code:

> # Initialize `x`
> x <- c(0.109, 0.359, 0.63, 0.996, 0.515, 0.142, 0.017, 0.829, 0.907)
> 
> # Compute the logarithm of `x`, return suitably lagged and iterated 
differences, 
> # compute the exponential function and round the result
> round(exp(diff(log(x))), 1)
[1]  3.3  1.8  1.6  0.5  0.3  0.1 48.8  1.1
>



Note that you need to import the magrittr library to get the 
above code to work. That's because the pipe operator is, as you 
read above, part of the magrittr library and is, since 2014, also 
a part of dplyr. If you forget to import the library, you'll get an 
error like

Error in eval(expr, envir, enclos): could not find function "%>%".

https://www.rdocumentation.org/packages/magrittr/versions/1.5


With the help of %<%, you can rewrite the above code as follows:

> # Import `magrittr`
> library(magrittr)
> 
> # Perform the same computations on `x` as above
> x %>% log() %>%
+   diff() %>%
+   exp() %>%
+   round(1)
[1]  3.3  1.8  1.6  0.5  0.3  0.1 48.8  1.1



library(ggplot2)
x <- c(-1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1)
y <- x^3  
qplot(x,y)

Example 1: plot or (qplot) makes a scatterplot when you
give it two vectors

> library(ggplot2)
> x <- c(-1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1)
> y <- x^3
> qplot(x,y)
>

Script

Console



Example 1: plot or (qplot) makes a scatterplot when you give it two vectors

Graphical Output

Scatterplots are useful  
for visualizing the  
relationship between  
two variables.



Example (2)
we’re going to use a different type of graph, a histogram. A histogram visualizes the  
distribution of a single variable; it displays how many data points appear at each value  
of x.

> x <- c(1, 2, 2, 2, 3, 3)
> qplot(x, binwidth = 1)
>

Figure 2 . qplot makes a histogram when you give  
it a single vector.



> x2 <- c(1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4)
> qplot(x2, binwidth = 1)

> x3 <- c(0, 1, 1, 2, 2, 2, 3, 3, 4)
> qplot(x3, binwidth =1)

Figure 3. qplot makes a histogram when  
you give it a single vector.



Currently, the CRAN package repository features 17648 available packages, I’ve listed some of 
the most powerful and commonly  used packages in predictive modeling in this article. Since, 
I’ve already explained the method of  installing packages, you can go ahead and install them 
now. Sooner or later you’ll need them.

Importing Data: R offers wide range of packages for importing data available in any format such  
as .txt, .csv, .json, .sql etc. To import large files of data quickly, it is advisable to install and use  
data.table, readr, RMySQL, sqldf, jsonlite.
Data Visualization: R has in built plotting commands as well. They are good to create simple  
graphs. But, becomes complex when it comes to creating advanced graphics. Hence, you should  
install ggplot2.
Data Manipulation: R has a fantastic collection of packages for data manipulation. These  
packages allows you to do basic & advanced computations quickly. These packages
are dplyr, plyr, tidyr, lubridate, stringr. 

Useful R Packages



Modeling / Machine Learning: For modeling, caret package in R is powerful  
enough to cater to every need for creating machine learning model. However,  
you can install packages algorithms wise such as randomForest, rpart, gbm etc
Note: I’ve only mentioned the commonly used packages. You might like to check
this interesting infographic on complete list of useful R packages.

https://www.analyticsvidhya.com/blog/2015/08/list-r-packages-data-analysis/


Getting Help with Help Pages



There are over 1,000 functions at the core of R, and new R  functions are created 
all of the time. This can be a lot of  material to memorize and learn! Luckily, each R 
function  comes with its own help page, which you can access by typing  the 
function’s name after a question mark.

For example, each of these commands will open a help page. Look for the pages  
to appear in the Help tab of RStudio’s bottom-right pane:
> ?sqrt
> ?log10
> ?sample

Hint: If a function comes in an R package, R won’t be able to find its help page
unless the package is loaded.



R also comes with a super active community of users that you can turn to for help
on the R-help mailing list. You can email the list with questions, but there’s a great  
chance that your question has already been answered. Find out by searching the  
archives.
Even better than the R-help list is Stack Overflow, a website that allows  
programmers to answer questions and users to rank answers based on  
helpfulness. Personally, I find the Stack Overflow format to be more user-
friendly than the R-help email list (and the respondents to be more human  
friendly). You can submit your own question or search through Stack Overflow’s  
previously answered questions related to R. There are over 30,000.

For both the R help list and Stack Overflow, you’re more likely to get a useful  
answer if you provide a reproducible example with your question. This means  
pasting in a short snippet of code that users can run to arrive at the bug or  
question you have in mind.

Getting More Help?!



Getting More Help?!

• R puts a big emphasis on documentation. The previously 
mentioned https://www.rdocumentation.org/
is a great website to look at the different documentation of different 
packages and functions.

• There are numerous blogs & posts on the web covering R such 
as KDnuggets and R-bloggers.

CB

https://www.kdnuggets.com/
http://www.r-bloggers.com/


Working Directory



Each time you open R, it links itself to a directory on your computer,  
which R calls the working directory. This is where R will look for files  
when you attempt to load them, and it is where R will save files when  
you save them. The location of your working directory will vary on  
different computers. To determine which directory R is using as your  
working directory, run:

> getwd()
[1] "C:/Users/new/Documents"
>



1. You can place data files straight into the folder that is your working  
directory, or

2. You can move your working directory to where your data files are.
3. You can move your working directory to any folder on your  

computer with the function setwd. Just give setwd the file path to  
your new working directory.

Hint: I prefer to set my working directory to a folder dedicated to 
whichever project I am currently working on. That way I can keep  all 
of my data, scripts, graphs, and reports in the same place. For
example:



> setwd("C:/Users/new/Desktop/Data files")
> getwd()
[1] "C:/Users/new/Desktop/Data files"
>

I prefer to set my working directory to a folder dedicated to whichever  
project I am currently working on. That way I can keep all of my data,  
scripts, graphs, and reports in the same place. For example:

Setting your Working Directory

Should be like  
this direction  
of the slash to  
make it work!

If the file path does not begin with your root directory, R will assume  
that it begins at your current working directory.

> setwd("~/Desktop/AITRS Course")

Tilde command



You can also change your working directory by clicking on  
Session > Set Working Directory
> Choose Directory in the RStudio menu bar.
You can see what files are in your working directory with list.files(). If  
you see the file that you would like to open in your working directory,  
then you are ready to proceed. How you open files in your working  
directory will depend on which type of file you would like to open.

"deck.RData"
> list.files()
[1] "deck.csv"
>



Designing projects
Managing your projects in a reproducible  
fashion doesn't just make your science  
reproducible, it makes your life easier.



Working directories are useful for keeping work organized. A working directory is 
one spot (e.g. a folder) that you have created for saving all of your work.

Here are a couple of different ideas for laying a project out.  This is 
the basic structure that I usually use:

proj/
├── R/
├── data/
├── doc/
├── figs/
└── output/

Hint: Open a folder in your Desktop and 
name it then create five subfolders as shown 
in the diagrams then you can open it as new 
project in R  



• The R directory contains various files with function definitions (but only function definitions -
no code that actually runs).

• The data directory contains data used in the analysis. This is treated as read only; in paricular  
the R files are never allowed to write to the files in here. Depending on the project, these  
might be csv files, a database, and the directory itself may have subdirectories.

• The doc directory contains the paper. I work in LaTeX which is nice because it can pick up  
figures directly made by R. Markdown can do the same and is starting to get traction among  
biologists. With Word you’ll have to paste them in yourself as the figures update.

• The figs directory contains the figures. This directory only contains generated files; that is, I  
should always be able to delete the contents and regenerate them.

• The output directory contains simulation output, processed datasets, logs, or other processed  
things.

• In this set up, I usually have the R script files that do things in the project root:



In this set up, I usually have the R script files that do things in
the project root:

proj/
├── R/
├── data/
├── doc/
├── figs/
├── output/
└── analysis.R

For very simple projects, you might drop the R directory, perhaps  
replacing it with a single file analysis-functions.R which you  
source.



The Data Analysis Workflow



The Data Analysis Workflow
1. Importing Data
2. Data Manipulation
3. The Machine Learning Part
4. Data Visualization
5. Reporting your results



1. Importing Data



Before you can start performing analysis, you first need to get your data into R. The good thing is that you 
can import into R all sorts of data formats, the hard part this is that different types often need a different 
approach:

• Flat files: You can import flat files with functions such as read.table() and read.csv() from the pre-
installed utils package. Specific R packages to import flat files data are readr and fread() function of the 
data.table package.
• You can get your excel files into R with either the readxl package, the gdata 
package and XLConnect package. https://www.datacamp.com/community/tutorials/r-tutorial-read-excel-
into-r
• The haven package lets you import SAS, STATA and SPSS data files into R. The foreign package lets you 
import formats like Systat and Weka.
• Connecting with a database happens via specific packages like RMySQL, RpostgreSQL and 
the ROracle package. Accessing and manipulating the database happens via DBI.
•For web scraping you can use a package like rvest. (For more info on web scraping with R check
http://blog.rolffredheim.com/2014/02/web-scraping-basics.html
If you want to learn more on how to import data into R check 
an https://www.datacamp.com/courses/importing-data-into-r?tap_a=5644-dce66f&tap_s=14201-e863d5

1.Importing Data

https://en.wikipedia.org/wiki/Flat_file_database
http://www.rdocumentation.org/packages/utils/functions/read.table
http://www.rdocumentation.org/packages/utils/functions/read.table
https://cran.r-project.org/web/packages/readr/index.html
http://www.rdocumentation.org/packages/data.table/functions/fread
https://github.com/hadley/readxl
https://cran.r-project.org/web/packages/gdata/
https://cran.r-project.org/web/packages/XLConnect/
https://www.datacamp.com/community/tutorials/r-tutorial-read-excel-into-r
https://github.com/hadley/haven
https://cran.r-project.org/web/packages/foreign/index.html
https://cran.r-project.org/web/packages/RMySQL/
https://cran.r-project.org/web/packages/RPostgreSQL
https://cran.r-project.org/web/packages/ROracle/index.html
https://cran.r-project.org/web/packages/DBI
https://cran.r-project.org/web/packages/rvest/
http://blog.rolffredheim.com/2014/02/web-scraping-basics.html


This Section will show you how to load and save
data into R from plain text files, R files, and Excel 
spreadsheets. It will also show you the R packages 
that you can use to load data from databases and 
other common programs, like SAS and MATLAB, 
etc.

Loading and Saving Data in R



The data import features can be accessed from the
environment pane or from the tool's menu.
The importers are grouped into 3 categories:
1. Text (base)-Delimited data (CSV)-CSVs are plain-text  

files
2. Text (readr)
3. Excel data
4. Statistical data (SPSS, SAS, and Stata)

To access this feature, use the "Import Dataset"  
dropdown from the "Environment" pane as shown  below:







R's built-in datasets



short description of each by running:
> library(package = "datasets")

Now, the datasets package comes with R, it's part of the default 
installation. However, it's not loaded,
it's not active in memory by default. And so by using library, and 
then in parenthesis, dataset, we'll load it.
And we'll make it available. You can also use require.

When we run that command, it's going to give us this information and 
this is a list of all of the datasets that are included in that package





R comes with many data sets preloaded in the datasets package, which  
comes with base R. These data sets are not very interesting, but they  
give you a chance to test code or make a point without having to load a  
data set from outside R. You can see a list of R’s data sets as well as a

To use a data set, just type its name.
Each data set is already presaved as
an R object. For example:
> iris

> iris
Sepal.Length Sepal.Width Petal.Length  

Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
11 5.4 3.7 1.5 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
13 4.8 3.0 1.4 0.1 setosa
14 4.3 3.0 1.1 0.1 setosa



Importing data from a spreadsheet

Spreadsheets are the universal data containers. Billions of datasets in the 
rows and columns of a spreadsheet. And they're very easy to import in R as 
long as you have what's called tidy data and that means each column is a 
variable, each row is an observation.



1. Importing data from CSV files



• Import from the file system or a url
• Change column data types
• Skip or include-only columns
• Rename the data set
• Skip the first N rows
• Use the header row for column names
• Trim spaces in names
• Change the column delimiter
• Encoding selection
• Select quote, escape, comment and NA identifiers

The CSV importer provides support to:



Example (1): You can load the deck data frame from the file deck.csv.  
https://gist.github.com/garrettgman/9629323

deck.csv is a comma-separated values file, or CSV for short. CSVs are plain-text  
files, which means you can open them in a text editor (as well as many other  
programs). If you open desk.csv, you’ll notice that it contains a table of data that  
looks like the following table. Each row of the table is saved on its own line, and  
a comma is used to separate the cells within each row. Every CSV file shares this  
basic format: "face","suit,"value"
"king","spades",13  
"queen","spades,12  
"jack","spades,11  
"ten","spades,10
"nine","spades,9
... and so on.



Once everything looks right, click Import. RStudio will read in the  data and save 
it to a data frame. RStudio will also open a data viewer, so you can  see your new 
data in a spreadsheet format. This is a good way to check that  everything came 
through as expected. If all worked well, your file should appear  in a View tab of 
RStudio, like in Figure (3). You can examine the data frame in the  console with
head(deck).

Figure )3(. When you import  
a data set, RStudio will save  
the data to a data frame and  
then display the data frame  
in a View tab. You can open  
any data frame in a View tab  
at any time with the View  
function.



> head(deck)  
face suit value

ten spades

1 king spades 13
2 queen spades 12
3 jack spades 11
4 10

9
8

5 nine spades
6 eight spades
> tail(deck)

two hearts
ace hearts

face suit value
47 six hearts 6

5
4
3
2
1

48 five hearts
49 four hearts
50 three hearts
51
52
>

head and tail are two functions that provide an easy way to peek at large data sets.  
head will return just the first six rows of the data set, and tail will return just the  last 
six rows. To see a different number of rows, give head or tails a secondargument, the 
number of rows you would like to view, for example, head(deck, 10).



2. Importing data from Excel files



• Import from the file system or a url
• Change column data types
• Skip columns
• Rename the data set
• Select an specific Excel sheet
• Skip the first N rows
• Select NA identifiers

The Excel importer provides support to:

Example select import StateData.xlsx



Example select import StateData.xlsx



3. Importing data from SPSS, SAS and 
Stata  files

The SPSS, SAS and Stata importer provides support to:

Import from the file system or a url
Rename the data set  
Specify a model file



Plain-text Files



Plain-text files are one of the most common ways  
to save data. They are very simple and can be read  
by many different computer programs—even the  
most basic text editors. For this reason, public  
data often comes as plain-text files. For example,
• Census Bureau
• Social Security Administration
• Bureau of Labor Statistics all make



All plain-text files can be saved with the extension
.txt (for text), but sometimes a file will receive a  
special extension that advertises how it separates  
data-cell entries. Another text file type would be a  
comma-separated-values file and would usually be  
saved with the extension .csv. 



?read.csv



filename <- read.csv(file.choose())
filename 

Read/Import csv file using command 

Alternatively 

getwd()
setwd("/Users/admin/Desktop/AITRS Course/data")
deck <- read.csv("deck.csv")
deck 



filename <- read.csv(file.choose())
filename 

Read/Import csv file using command 

Alternatively 

getwd()
setwd("/Users/admin/Desktop/AITRS Course/data")
deck <- read.csv("deck.csv")
deck 

For Mac-OS



getwd()
setwd(”C:\\Users\\abbas\\Desktop\\AITRS Course\\
deck.csv data")
deck <- read.csv("deck.csv")
deck 

For Window



To load a plain-text file, use read.table. The first argument of
read.table should be the name of your file (if it is in your working  
directory), or the file path to your file (if it is not in your working  
directory). If the file path does not begin with your root directory, R will  
append it to the end of the file path that leads to your working  
directory. You can give read.table other arguments as well. The two  
most important are sep and header. If the royal flush data set was  
saved as a file named poker.csv in your working directory, you could  
load it with:
> deck <- read.table("deck.csv", sep = ",", header = TRUE)
>

read.table



> deck <- read.table("deck.csv", sep = ",", header = TRUE)
>
sep
Use sep to tell read.table what character your file uses to separate data entries. To find  
this out, you might have to open your file in a text editor and look at it. If you don’t  
specify a sep argument, read.table will try to separate cells whenever it comes to white  
space, such as a tab or space. R won’t be able to tell you if read.table does this correctly  
or not, so rely on it at your own risk.
header
Use header to tell read.table whether the first line of the file contains variable names  
instead of values. If the first line of the file is a set of variable names, you should set  
header = TRUE.
na.strings
Oftentimes data sets will use special symbols to represent missing information. If you  
know that your data uses a certain symbol to represent missing entries, you can tell



read.table (and the preceding functions) what the symbol is with  the 
na.strings argument. read.table will convert all instances of  the missing 
information symbol to NA, which is R’s missing  information symbol 

You could read the data set into R and convert the missing  values 
into NAs as you go with the command:

> deck <- read.table("deck.csv", sep = ",", header = TRUE,
na.string=".")
>



Sometimes a plain-text file will come with introductory text that is not  
part of the data set. Or, you may decide that you only wish to read in  
part of a data set. You can do these things with the skip and nrow  
arguments. Use skip to tell R to skip a specific number of lines before it  
starts reading in values from the file. Use nrow to tell R to stop reading  
in values after it has read in a certain number of lines.

You can read just the six lines (five rows plus a header) that you want  
with:

skip and nrow

> deck <- read.table("deck.csv", sep = ",", header = TRUE, skip = 
3, nrow = 5) 



stringsAsFactors
R reads in numbers just as you’d expect, but when R comes across
character strings (e.g., letters and words) it begins to act strangely. R  
wants to convert every character string into a factor. This is R’s default  
behavior, but I think it is a mistake. Sometimes factors are useful. At  
other times, they’re clearly the wrong data type for the job. Also factors  
cause weird behavior, especially when you want to display data

Setting the argument stringsAsFactors to FALSE will ensure that R saves  
any character strings in your data set as character strings, not factors. To  
use stringsAsFactors, you’d write:

> deck <- read.table("deck.csv", sep = ",", header = TRUE, stringsAsFactors = FALSE)
>



If you will be loading more than one data file, you can
change the default factoring behavior at the global 
level with:

options(stringsAsFactors = FALSE)

This will ensure that all strings will be read as strings,
not as factors, until you end your
R session, or rechange the global default by running:

options(stringsAsFactors = TRUE)



The read Family
R also comes with some prepackaged short cuts for read.table, shown in Table

> deck <- read.csv("deck.csv")
>

For example:



install.packages("readxl")
# Loading
library("readxl")
# xlsx files
my_data <- read_excel("StateData.xlsx")

It’s also possible to choose a file interactively using the function file.choose()

my_data <- read_excel(file.choose())

Excel File



Web Data
install.packages("RCurl") 
install.packages("XML") 
install.packages("stringr") 
install.packages("plyr")

# Read the URL.
url <-"http://www.geos.ed.ac.uk/~weather/jcmb_ws/"

library("RCurl") 
library("XML") 
library("stringr")
library("plyr")

url <-"https://gist.github.com/garrettgman/9629323"



Saving Data



Once your data is in R, you can save it to any file format that R supports.  
If you’d like to save it as a plain-text file, you can use the write family of  
functions. The three basic write functions appear in Table below. Use  
write.csv to save your data as a .csv file and write.table to save your data  
as a tab delimited document or a document with more
exotic separators.

Saving Plain-Text Files

Table 2. R saves data sets to plain-text  
files with the write family of functions



> write.csv(deck, file = "cards.csv", row.names = FALSE)
>

Before we go any further, let’s save a copy of deck as a new .csv file.  
That way you can email it to a colleague, store it on a thumb drive, or  
open it in a different program. You can save any data frame in R to a
.csv file with the command write.csv. To save deck, run:

2. you should provide a file name to give your file. R will take this
name quite literally, so be sure to provide an extension.

1. You should give write.csv the name of the data frame that you 
wish to save



Finally, you should add the argument row.names = FALSE. This will  
prevent R from adding a column of numbers at the start of your  
data frame. These numbers will identify your rows from 1 to 52, but  
it is unlikely that whatever program you open cards.csv in will  
understand the row name system. More than likely, the program  will 
assume that the row names are the first column of data in your  data 
frame. In fact, this is exactly what R will assume if you reopen  
cards.csv. If you save and open cards.csv several times in R, you’ll  
notice duplicate columns of row numbers forming at the start of  
your data frame. I can’t explain why R does this, but I can explain  
how to avoid it: use row.name = FALSE whenever you save data with  
write.csv.



Saving your work
You have several options for saving your work:
• You can save individual variables with the save() function.
• You can save the entire workspace with the save.image() function.
• You can save your R script file, using the appropriate save menu  

command in your code editor.
Suppose you want to save the value of yourname. To do that, follow  
these steps:
1.Find out which working directory R will use to save your file by  
typing the following:
> getwd()
[1] “c:/users/andrie”
The default working directory should be your user folder. The exact  
name and path of this folder depend on your operating system.



Important Hint: If you use the Windows operating system, the path is  
displayed with slashes instead of backslashes.

2.Type the following code in your console, using a filename like
yourname.rda, and then press Enter.

> save(yourname, file=”yourname.rda”)

R silently saves the file in the working directory. If the operation is
successful, you don’t get any confirmation message.

3.To make sure that the operation was successful, use your file  
browser to navigate to the working directory, and see whether the  
new file is there.



2. Data Manipulation
Data Manipulation in R can be carried out for further analysis and visualisation.

Let us see a few basic data structures in R:

1. Vectors in R- 1-dimensional data.

Types – integer, numeric, logical, character, complex.

2. Matrices in R- These are rectangular collections of elements and are useful when all data is of a single class that  
is numeric or characters. Dimensions – two, three, etc.

3. Lists in R- These are ordered containers for arbitrary elements and are used for higher dimension data, like 
customer data information of an organization

4. Data Frames- These are two-dimensional containers for records and variables and are used for 
representing data from spreadsheets etc. It is similar to a single table in the database.

5. Arrays- While matrices are confined to two dimensions, arrays can be of any number of dimensions. 
The array function takes a dim attribute which creates the required number of dimension



Sample() command in R
As we have seen, samples are created from data for analysis. To create samples, sample() command is used and the 
number of samples to be drawn are mentioned.

For example, to create a sample of 10 simulations of a die, below command is used:

> sample(1:6, 10, replace=TRUE)
[1] 4 1 4 2 5 5 1 2 3 4

> 
sample() should always produce random values but it does not happen with the test code sometimes. If 
substituted with a seed value, the sample() command always produces random samples.

The seed value is the starting point for any random number generator formula. Seed value defines both, the 
initialization of the random number generator along with the path that the formula will follow.

Let us see how seed value is used:

> set.seed(100)
> sample(1:5, 10, replace = TRUE) 
[1] 2 3 1 2 4 4 2 3 2 5

> 

Hint: Computers don’t generate truly random numbers—they 
are deterministic, which means that they operate by a set of 
rules. You can mimic randomness by specifying a set of rules. For 
example, “take a number x, add 900 +x, then subtract 52.” In 
order for the process to start, you have to specify a starting 
number, x (the seed). Let’s take the starting number 77:

https://www.statisticshowto.com/deterministic/


Adding Calculated Fields to Data
R makes it easy to perform calculations on columns of a data frame because each column is itself a vector.

We will see how to calculate the ratio between the lengths and width of the sepals.
The command for the same is:

> data(iris)
> x <- iris$Sepal.Length / iris$Sepal.Width
> head(x)    
[1] 1.457143 1.633333 1.468750 1.483871 1.388889 1.384615
> 

Creating Subgroups or Bins of Data

Most statisticians often draw histograms to investigate their data. As this type of calculation is common when you 
use statistics, R has some functions for it



1. cut() function in R
cut() function groups values of a variable into larger bins. It creates bins of 
equal size and classifies each element into its appropriate bin.

Let us see how cut works in R with an example:

> frost <- c(1,2,3)
> cut(frost, 3, include.lowest=TRUE)
[1] [0.998,1.67] (1.67,2.33]  (2.33,3]    
Levels: [0.998,1.67] (1.67,2.33] (2.33,3]
> cut(frost, 3, include.lowest=TRUE, labels=c("Low", "Med", "High"))
[1] Low  Med  High
Levels: Low Med High



merge() Function in R
Let’s see the use of merge() function.
The merge() function is used to combine data frames. Let us see this with an example: every.states

every.states <- as.data.frame(state.x77)
every.states$Name <- rownames(state.x77)
rownames(every.states) <- NULL
str(every.states)

#Creating a subset of freezing states
freezing.states <- every.states[every.states$Frost>150

, c("Name", "Frost")]
freezing.states

#Creating a subset of big states
big.states <- every.states[every.states$Area>=100000

, c("Name", "Area")]
big.states

#Using the merge function
merge(freezing.states, big.states)

Try to run this code



> every.states <- as.data.frame(state.x77)
> every.states$Name <- rownames(state.x77)
> rownames(every.states) <- NULL
> str(every.states)
'data.frame': 50 obs. of  9 variables:
$ Population: num  3615 365 2212 2110 21198 ...
$ Income    : num  3624 6315 4530 3378 5114 ...
$ Illiteracy: num  2.1 1.5 1.8 1.9 1.1 0.7 1.1 0.9 1.3 2 ...
$ Life Exp  : num  69 69.3 70.5 70.7 71.7 ...
$ Murder    : num  15.1 11.3 7.8 10.1 10.3 6.8 3.1 6.2 
10.7 13.9 ...
$ HS Grad   : num  41.3 66.7 58.1 39.9 62.6 63.9 56 54.6 
52.6 40.6 ...
$ Frost     : num  20 152 15 65 20 166 139 103 11 60 ...
$ Area      : num  50708 566432 113417 51945 156361 ...
$ Name      : chr "Alabama" "Alaska" "Arizona" 
"Arkansas" ...

Results



> #Creating a subset of freezing states
> freezing.states <- every.states[every.states$Frost>150
+                                 , c("Name", "Frost")]
> freezing.states

Name Frost
2         Alaska   152
6       Colorado   166
19         Maine   161
23     Minnesota   160
26       Montana   155
28        Nevada   188
29 New Hampshire   174
34  North Dakota   186
41  South Dakota   172
45       Vermont   168
50       Wyoming   173



> #Creating a subset of big states
> big.states <- every.states[every.states$Area>=100000
+                            , c("Name", "Area")]
> big.states

Name   Area
2      Alaska 566432
3     Arizona 113417
5  California 156361
6    Colorado 103766
26    Montana 145587
28     Nevada 109889
31 New Mexico 121412
43      Texas 262134



> #Using the merge function
> merge(freezing.states, big.states)

Name Frost   Area
1   Alaska   152 566432
2 Colorado   166 103766
3  Montana   155 145587
4   Nevada   188 109889



Sorting and Ordering Data in R using sort() and 
order() in R
A common task in data analysis and reporting is sorting information. You can answer many 
everyday questions with sorted tables of data that tell you the best or worst of specific things;

Let’s first create data frame and then we will sort it. Then, we will use some.states command to create a data fram

some.states <- data.frame( Region = state.region, + state.x77)  
some.states <- some.states[1:10, 1:3]
sort(some.states$Population)   #Command to sort Population in ascending order
sort(some.states$Population, decreasing=TRUE)   #Command to sort Population 

#in descending order
order.pop <- order(some.states$Population)      #Another way of sorting
some.states[order.pop, ]                                         #In ascending order
order(some.states$Population, decreasing=TRUE)   #Descending Order



Results
> some.states <- data.frame( Region = state.region, + state.x77)  
> some.states <- some.states[1:10, 1:3]
> sort(some.states$Population)   #Command to sort Population in ascending order
[1]   365   579  2110  2212  2541  3100  3615  4931  8277 21198

> sort(some.states$Population, decreasing=TRUE)   #Command to sort Population 
[1] 21198  8277  4931  3615  3100  2541  2212  2110   579   365

>                                                 #in descending order
> order.pop <- order(some.states$Population)      #Another way of sorting
> some.states[order.pop, ]        #In ascending order

Region Population Income
Alaska           West        365   6315
Delaware        South        579   4809
Arkansas        South       2110   3378
Arizona          West       2212   4530
Colorado         West       2541   4884
Connecticut Northeast       3100   5348
Alabama         South       3615   3624
Georgia         South       4931   4091
Florida         South       8277   4815
California       West      21198   5114
> order(some.states$Population, decreasing=TRUE)   #Descending Order
[1]  5  9 10  1  7  6  3  4  8  2

> 



3. The Machine Learning Part
In case you are new to statistics, there are some very solid sources that 
explain the basic concepts while making use of R:

https://www.datacamp.com/tracks/learn-statistics-with-r

• Andrew Conway’s Introduction to statistics with R (online interactive coding course)

https://www.datacamp.com/community/tutorials/machine-learning-in-r

• Furthermore there are some very interesting blogs to kickstart your 
Machine Learning

https://developers.google.com/machine-learning/crash-course/descending-into-ml/video-lecture

• Google crash course in Machine Learning

• Good Book An Introduction to Machine Learning with R
https://lgatto.github.io/IntroMachineLearningWithR/index.html#caution

https://www.datacamp.com/tracks/learn-statistics-with-r
https://www.datacamp.com/introduction-to-statistics?tap_a=5644-dce66f&tap_s=14201-e863d5
https://www.datacamp.com/community/tutorials/machine-learning-in-r
https://developers.google.com/machine-learning/crash-course/descending-into-ml/video-lecture
https://lgatto.github.io/IntroMachineLearningWithR/index.html


4. Data Visualization
If you want to get started with visualizations in R, take some time to study the ggplot2 package. One of 
the (if not the) most famous packages in R for creating graphs and plots. ggplot2 is makes intensive use of 
the grammar of graphics, and as a result is very intuitive in usage (you’re continuously building part of 
your graphs so it’s a bit like playing with lego). There are tons of resources to get your started such as 
this
https://www.datacamp.com/courses/data-visualization-with-ggplot2-1?tap_a=5644-dce66f&tap_s=14201-
e863d5

Besides ggplot2 there are multiple other packages that allow you to create highly engaging graphics and that 
have good learning resources to get you up to speed. Some of our favourites are:
• ggvis for interactive web graphics 
http://ggvis.rstudio.com/
• googleVis to interface with google charts. 
https://developers.google.com/chart/interactive/docs/gallery
• Plotly for R
https://plotly.com/r/

https://cran.r-project.org/web/packages/ggplot2
http://www.springer.com/gp/book/9780387245447
https://www.datacamp.com/courses/data-visualization-with-ggplot2-1?tap_a=5644-dce66f&tap_s=14201-e863d5
http://ggvis.rstudio.com/
http://ggvis.rstudio.com/
https://github.com/mages/googleVis
https://developers.google.com/chart/interactive/docs/gallery
https://plot.ly/r/
https://plotly.com/r/


One of the best way to share your models, visualizations, etc is through 
dynamic documents.
https://rmarkdown.rstudio.com/
(based on knitr and pandoc) is a great tool for reporting your data analysis in 
a reproducible manner though html, word, pdf, ioslides, etc. This 4 hour 
tutorial on https://www.datacamp.com/courses/reporting-with-r-
markdown?tap_a=5644-dce66f&tap_s=14201-e863d5
explains the basics of R markdown. Once you are creating your own 
markdown documents, make sure
https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-
cheatsheet.pdf
is on your desk.

5.Reporting your results

http://rmarkdown.rstudio.com/
https://cran.r-project.org/web/packages/knitr
http://pandoc.org/


Big Data Types



(1) Structured Data,
(2) Semi-Structured Data, and
(3) Unstructured Data

Big Data Types
Variety is one of the principles of Big Data as  
described previously. The Big Data can be divided  
into three types:



(1) Structured Data
Structured data generally refers to data that has a defined length and format. Most  
organizations are storing large amounts of structured data in various divisions, in  
normalised/deformalised formats in a database: Data warehouses, relational  
database management system (RDMSs), and various other environments.

The data can be queried using a language like structured query language (SQL) in  
which the datasets can be updated with new data, and deleted, read or any other  
activity. The evolution of technology provides newer sources of structured data  
being produced - often in real time and in large volumes. The sources of data are  
divided into three categories:



(i) Computer- or Machine-Generated Structured Data:

• Sensor data
• Web log data
• Point-of-sale data:
• Financial data

(ii) Human-Generated Data:

• Input data
• Click-stream data
• Gaming-related data



Example of Structure d Data:
Simple Invoices Tab lesfrom Northwind

Acce ss' s Datash e et vie wof an Inv oices t able ,which is base d o n t h e Nort hw ind. m db sa m pl ed at abase' s
Ord e rs t able .The lnv o ice No fi e ld is th e primary key . Val ues in t he Ord e rl D, Cust o m e rl D, Em pl oyee lD,
and Sh ippe rl Dfie ld s re lat e to pr im ary ke y val ues in No rt hwind' s Ord e rs, Custom e rs, Em pl oye es, and
Shi ppe rs t abl es.Afi e ld t h at cont ain s value s e q ual toth os e o f prim ary key valu e s in ot h e r t ables is calle
d a fore ign ke y [fie Id].

Th is sim ple Invoices t abl ewas cre at ed from t he No rthw ind Ord e rs t able and d oe sn' t take adv ant age
of Access ' s e xt e nd e d pro pe rt ies, such as t h e fie ld captio ns, looku p fie lds, and s u bdat asheets in t he Dat
ash e et vie wof t h e Ord e rs t able.
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(2) Semi-Structured Data
Semi-structured data is a kind of data that falls between structured and  
unstructured data. This type of data became a talking point. Mostly data coming  
from Facebook, Twitter, Blogs, publically available websites, etc. makes the basis  
of semi-structured data. These data sources usually have defined structures and  
mostly contain text information. The free flow text generated through the social  
media is the only unstructured component whilst the remaining data is  
structured.
Most of the times, the social data is mistaken with unstructured data. The social  
data is NOT unstructured data, it is semi-structured and in fact, some of the  
social data contains industry standard structures. Social media data: This data is  
generated from the social media platforms such as YouTube, Facebook, Twitter,  
LinkedIn, Posts, Favourites, Sentiment, and Flickr, etc. This creation data process  
or the process of gathering social media data is normally called “mining”.



Example  of Sem  i-Stru ctured Data:
Go  og  l e Trends: A Web-Based To o l for Re  al-Time  Surve  illance  of Dise ase Outbreaks

Go ogle F l u Tre nds can de t ec t re gio n a l o ut brea ks of in flue n za 7 - 1 0 days befo re conv en t io na l Ce nt e rs  fo r Di 
sease Co nt rol a n d Preven t i o n su rve illa nce systems. We des cribe t h e Goo gle Tre nd s t oo l, e xp l a i n  h o w t h e  da t 
a  a re process  ed, prese nt e xa m ples,      a    nd dis cuss  it  s      s   t  re ngt hs a n d  li m it at    io ns.  Goo  gle
Tre nd s s ho ws grea t pro m ise     as      a    t im e ly, ro bust, a nd se ns it ive su rve illa nce syste m.  It is bes t  use d fo r
surve illance of e pidemics and dise ase s wit h high pre vale nces an d is  curr ent ly bett e r suited to t rack
d isease activity in d eve lo ped cou n t rie s, beca us e t o be m o st effe ct ive, it requ ire s la rge po pu la t io ns of  Web  
sea rch use rs. Sp ikes  in  sea  rch volum e a re cu rr e nt ly h a rd t o  i n t e rp re t  but h ave   t h e  be n e fitof
i n creas i ng vigil ance. Go ogle s ho u ld work wit h p u b lic h e alt h ca re prac tit io n e rs to de ve lo p spe cia li ze d  t oo ls,   
us ing Goo  gle Flu Tre nds as  a blu e p rint , to  t rac k infect i o           us d ise    ase               s.    Su it a  ble  We b sea rch  q u e ry
p ro xies    fo  r d ise   a ses  nee d t o be  es t a bli s  he d for  spec  ia   li zed  t o o ls  o   r sy nd ro m ic surv e illa nce. Th is  un iqu e
a n d i nn o vat ive tec hn o l o         gy t akes  us o ne step close r to  t rue rea l-t  ime  ou t brea k s urv e ill a nce. Goo  gle Flu
Tre nds We b t oo l  int e rface (a va il a bl e a  t  htt ps :/ / www .goog le. com/ t re n ds/ e xp lo re? q= fl u t re nds ).
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Figu re  (1): Goo  gle Tre nds  o ut put  fo r Web   se arch q ue ries   for t he t e rm  "flu" wo rldwide  from Ja  nu ary
2004 t o Ma rch  2 009.

Reference : He rma n An t h o n y Ca rn e i ro, a n d E le fth e rios My l o n akis, " Go o gl eTre n ds: A We b- Base d Too l  fo   r Rea     
l-Tim e Su rve illa nce of  Dis  e  ase  Out brea ks"  SU RF   ING   TH E    W EB   •  CID  2009 :4 9 (15  No ve m be r) •
1  557      -1 5  65     ( 20   1 6)



(3) Unstructured Data
Unstructured data does not have any defined, consistent fields and it may even do  
not have any numbers and text. Unstructured data can be divided also into either  
machine generated or human generated and described as flows:

(i) Machine-Generated Unstructured Data Examples:
• Satellite images
• Scientific data
• Photographs and video
• Radar or sonar data

(ii) Human-generated Unstructured Data Examples:
• Mobile and Voice data
• Web behavior and content
• Image and Video Data
• Machine Data



Creating Subsets of Data in R
The process of creating samples is called subsetting. Different methods of subsetting in R are:

1. $
The dollar sign operator selects a single element of data. The result of this operator is always a vector when we 
use it with a data-frame.
2. [[
Similar to $ in R, the double square brackets operator in R also returns a single element, but it offers the 
flexibility of referring to the elements by position rather than by name. It can be used for data frames and lists.
3. [
The single square bracket operator in R returns multiple elements of data. The index within the square brackets 
can be a numeric vector, a logical vector, or a character vector.

For example: To retrieve 5 rows and all columns of already built-in dataset iris, the below command, is 
used:



Example of Unstructured Data  
Sate llite  data Exam pie [7]

The use of satellites to predict weather is well known. But satellite data can also map differences
in the Earth's surface so precisely that we can calculate how much water is stored in even the
most isolated of aquifers (Sullivan, 2015L or analyse the quality of soil (Lenhardt, 2015).
Light emissions picked up by satellites are also being used to proxy poverty levels and track
GOP growth to supplement national accounting in d ata-poor countries (Henderson et al.,
2012).

In Indonesia, researchers have used data on electrification and economic growth for 5,000
sub-districts in Indonesia between 1992 and 2008 (Olivia et al 2014).
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Figure (2): An example of raw and postprocessed satellite data. (Left) Alo ng -track satellite
observations of sea surface height from the JASON-II satellite for May 20, 2010. (Middle) A 12-
day composite of five satellites centered on May 20, 2010. (Right) The postprocessed data from
May 20, 2010. The altimeter products were produced by Ssalto/Duacs and distributed by
AVISO, with support from CNES(www .aviso.oce ano bs .co m/ d uacs/ ).

Ref erence: James H. Faghmous, and Vipin Kumar/' A Big Data Guide to Understanding Climate
Change: The Case for Theory-Guided Data Sciencen, BigData. 2(3): 155- 163 (2014).

http://www.aviso.oceanobs.com/duacs/)


Thank you 


