
Dr. Abbas Maaroof
aimaaroof@gmail.com

AITRS-2 June 2021

LECTURE 2
FUNDAMENTALS OF R

1. Getting started

1. You have already installed R and Rstudio at your computer
2. Click on the Rstudio Icon you should see this layout

R-
Console

R-
Script

R environment-
command history
and existing
variables

Displays
Graphical
Results Output
and Help pages

1.1. Install R and Rstudio

Bottom left: console window (also called command window). Here you can type simple commands after the
“>” prompt and R will then execute your command. This is the most important window, because this is where R
actually does stuff.

Top left: editor window (also called script window). Collections of commands (scripts) can be edited and saved.
When you don't get this window, you can open it with File ! New ! R script Just typing a command in the editor
window is not enough, it has to get into the command window before R executes the command. If you want to
run a line from the script window (or the whole script), you can click Run or press CTRL+ENTER to send it to the
command window.

Top right: workspace / history window. In the workspace window you can see which data and values R has in its
memory. You can view and edit the values by clicking on them. The history window shows what has been typed
before.

Bottom right: files / plots / packages /help window. Here you can open les, view plots (also previous plots),
install and load
packages or use the help function.

You can change the size of the windows by drag- ging the grey bars between the windows.

Your working directory is the folder on your computer in which you are currently working.
When you ask R to open a certain file, it will look in the working directory for this file, and
when you tell R to save a data file or figure, it will save it in the working directory.

Before you start working, please set your working directory to where all your data and script
files are or should be stored.

Type in the command window: setwd("directoryname"). For example:

> setwd("~/Desktop/AITRS Course")

Make sure that the slashes are forward slashes and that you don't forget the apostrophes. R
is case sensitive, so make sure you write capitals where necessary.

Within RStudio you can also go to session / Set working directory.

1.2. Working directory

R can do many statistical and data analyses. They are organized in so-called packages or
libraries. With the standard installation, most common packages are installed. To get a list of
all installed packages, go to the packages window or type library() in the console window.

There are many more packages available on the R website. If you want to install and use a
pack-age (for example, the package called “geometry") you should:

1. Install the package: click install packages in the Tools window and type geometry or type
install. packages(”ggplot2") in the command window.

2. Load the package: check box in front of geometry or type library(”ggplot2") in the
command window.

1.3. Libraries

2. Introduction to
examples of R commands

The RStudio Interface
1. You type R code into the bottom line of the Rstudio

console pane and then click Enter to run it. The code
you type is called command . The line you type it into
is called the command line.

2. When you type a command at the prompt and hit
Enter, your computer executes the command and
shows you the results. Then Rstudio displays a fresh
prompt for the next command. For example, if you type
1+1 and hit Enter, RStudio will display:

> myString <- "Hello, World!"
> print (myString)
[1] "Hello, World!"

R Command Prompt

R Script File
My first program in R Programming
myString <- "Hello, World!"
print (myString)

Comments
My first program in R Programming

Basic Syntax

> 1+1
[1] 2
>

> 100:130
[1] 100 101 102 103 104 105 106 107 108 109 110 111 112 113
114 115 116 117 118 119 120 121
[23] 122 123 124 125 126 127 128 129 130
>

Example (2)

Example (1)

it Means the first value

The colon operator (:) return every
integer between two integers. It is
easy way to create a sequence of
numbers.

Example (3)

If you type an incomplete command and press Enter R will display
a+ prompt, which means it is waiting for you to type the rest of
your command. Either finish the command or hi Escape to start
over:

> 5 -
+
+ 1
[1] 4
>

Example (4)

If you type a command that R doesn’t recognize, R will return an
error message. You can try different command at the next prompt:

> 3 % 5
Error: unexpected input in "3 % 5"
>

Example (5)
Once you get the hang of the command line, you can easily do
anything in R that you would do with a calculator. For example, you
could do some basic arithmetic:

> 2*3
[1] 6
> 4-1
[1] 3
> 6/ (4-1)
[1] 2
>

R treats the hashtag character, # , in a special way; R will not run
anything follows a hashtag on a line. This makes hashtags very useful
for adding comments and annotations to your code. The hashtag is
known as the commenting symbol in R.

Example (6)

We will use a single hashtags # to display our own comments
and a double hashtag, ##, to display the results of code

Ctrl+C command is to cancel command

Now that you know how to use R, let’s use it to make a virtual die.
The : Operator returns its results as a vector, a one-dimensional set
of numbers:

> 1:6
[1] 1 2 3 4 5
6
>

Running 1:6 generated a vector of numbers for you to see, but it
didn’t save the vector anywhere in your computer’s memory.
If you want to see the numbers again you need to save them
somewhere. You can do that by create an R object .

Arithmetic with R
In its most basic form, R can be used as a simple calculator.
Consider the following arithmetic operators:

Addition: +
Subtraction: -
Multiplication: *
Division: /
Exponentiation: ^
Modulo: %%

The last two might need some explaining:

The ^ operator raises the number to its left to the power of
the number to its right: for example 3^2 is 9.

The modulo returns the remainder of the division of the
number to the left by the number on its right, for example 5
modulo 2 or 5 %% 2 is 1.

For example, the expression "5 mod 2" would evaluate to 1
because 5 divided by 2 leaves a quotient of 2 and a remainder
of 1

Exercise (1): Try to do these
Hint (1): R makes use of the # sign to add
comments, so that you and others can
understand what the R code is about. Just
like Twitter! Comments are not run as R
code, so they will not influence your
result.

Hint (2): You can also execute R
commands straight in the console. This is
a good way to experiment with R code, as
your submission is not checked for
correctness.

1. Calculator
R can be used as a calculator. You can just type your equation in the command
window after the
“>”:

> 10^2 + 36
[1] 136
>

Exercise:
Compute the difference between 2014 and the
year you started at this university and divide this
by the difference between 2014 and the year
you were born. Multiply this with 100 to get the
percentage of your life you have spent at this
university. Use brackets if you need them.

Hint: If you use brackets and forget to add the closing bracket, the “>” on the command line changes into a \+".
The “+: can also mean that R is still busy with some heavy computation. If you want R to quit what it was doing
and give back the “ >”, press ESC

You can also give numbers a name. By doing so, they become so-
called variables which can be used later. For example, you can type in
the command window:

> a = 4
You can see that a appears in the workspace window, which means
that R now remembers what a is . x You can also ask R what a is (just
type a ENTER in the command window):

> a
[1] 4

2.2. Workspace

or do calculations with a:
> a * 5
[1] 20
If you specify a again, it will forget what value
it had before. You can also assign a new value to
a using the old one.
> a = a + 10
> a
[1] 14

To remove all variables from R's memory, type
> rm(list=ls())
or click “clear all: in the workspace window. You can see that RStudio then
empties the workspace window. If you only want to remove the variable a,
you can type rm(a).

Variable assignment
A basic concept in (statistical) programming is called a variable.

A variable allows you to store a value (e.g. 4) or an object (e.g.
a function description) in R. You can then later use this
variable's name to easily access the value or the object that is
stored within this variable.
You can assign a value 4 to a variable my_var with the
command

my_var <- 4

Exercise (2):
complete the code in the editor such that it assigns the value
42 to the variable x in the editor. Notice that when you ask R to
print x, the value 42 appears.

Hint: the sign <- means
equal to

Exercise (3):
Suppose you have a fruit basket with five apples. As a data
analyst in training, you want to store the number of apples in
a variable with the name
my_apples

• Type the following code in the editor: my_apples <- 5. This will
assign the value 5 to my_apples.
• Type: my_apples below the second comment. This will print out the

value of my_apples.

Answer:

Exercise (5):
Every tasty fruit basket needs oranges, so you decide to add six
oranges. As a data analyst, your reflex is to immediately create
the variable my_oranges and assign the value 6 to it. Next, you
want to calculate how many pieces of fruit you have in total.
Since you have given meaningful names to these values, you
can now code this in a clear way:

Answer:

• Assign to my_oranges the value 6.
• Add the variables my_apples and my_oranges and have R simply

print the result.
• Assign the result of adding my_apples and my_oranges to a new

variable my_fruit.

Objects

Objects
What is an object? Jus a name that you can use to call up stored
data
For example: You can save data into an object like a or b,
wherever encounters the object, it will replace it with the
data saved inside such as:

> a<- 1
> a
[1] 1
> a+2
[1] 3
>

So, for another example, the following code would create an
object named die that contains the numbers one through
six. To see what is stored in an object, just type the object’s
name by itself:
> die <- 1:6
> die
[1] 1 2 3 4 5 6
>

When you create an object, the object will appear in the
environment pane of RStudio, as shown in Figure 2 . This pane
will show you all of the objects you’ve created since opening
RStudio

Figure 2: The RStudio environment pane keeps track of the R
objects you create

You can name an object anything you want , but there are a
few rules:
1. A name cannot start with a number.
2. A name cannot use some special, like ^, !,$,@,+,-,/,or*:

Good names Names that cause
errors

a 1trial

b $

F00 ^mean

my_var 2nd

.day !bad

R also understands capitalization (or is case-sensitive), so name
and Names will refer to different objects:

> Name <- 1
> name <- 0
> name+1
[1] 1
>

Finally, R will overwrite any previous information stored in an
object without you for permission. So it is a good to not use
names that are already taken: > my_number <- 1

> my_number
[1] 1
> my_number <- 999
> my_number
[1] 999
>

You can see which object names you have already used with
the function ls:
> ls ()
[1] "Name" "a" "die" "mmy_number"
"my_number" "name"
>

You now have a virtual die stored in your computer’s memory.
you can access it whenever you like by typing the word die.
R will replace an object with its contents whenever the object’s
name appear in a command
You can do all sort of math with die word, let us take a look at
how to do that:

> die -1
[1] 0 1 2 3 4 5
> die /2
[1] 0.5 1.0 1.5 2.0 2.5 3.0
> die*die
[1] 1 4 9 16 25 36
>

R uses element-wise execution. When you manipulate a set of
numbers, R will apply the same operation to each
element in the set. So for example, when you run die - 1, R
subtracts one from each element of die.

For Example
when you run die * die, R lines up the two die vectors and then
multiplies the first element of vector 1 by the first element of vector 2. It
then multiplies the second element of vector 1 by the second element of
vector 2, and so on, until every element has been multiplied. The result
will be a new vector the same length as the first two, as shown in Figure
3.

Figure 3. When R performs
element-wise execution, it
matches up vectors and then
manipulates each pair of
elements independently

If you give R two vectors of unequal lengths, R will repeat the shorter
vector until it is as long as the longer vector, and then do the maths as
show in Figure 4

> 1:2
[1] 1 2
> 1:4
[1] 1 2 3 4
> die
[1] 1 2 3 4 5 6
>
>
>
> die + 1:2
[1] 2 4 4 6 6 8
> die + 1:4
[1] 2 4 6 8 6 8
Warning message:
In die + 1:4 :

longer object length is not a multiple of shorter object length
>

Figure 4. R will repeat a short vector to
do element-wise operations with two
vectors of uneven lengths.

Now that you can do math with your die object, let’s look at
how you could “roll” it.

Rolling your die will require something more sophisticated
than basic arithmetic; you’ll need to randomly select one of
the die’s values. And for that, you will need a function.

Scripts

Scripts
What if you want to edit roll2 again? You could go back and retype
each line of code in roll2, but it would be so much easier if you had a
draft of the code to start from. You can create a draft of your code as
you go by using an R script.

An R script is just a plain text file that you save R code in. You can open
an R script in RStudio by going to File> New File > R script in the menu
bar. RStudio will then open a fresh script above your console pane, as
shown in Figure 8.

New
Script

Figure 4. When you
open an R Script (File
> New File > R Script
in the menu bar),
RStudio creates a
fourth pane above
the console where
you can write and
edit your code.

RStudio comes with many built-in features that make it easy to work with scripts.
First, you can automatically execute a line of code in a script by clicking the Run
button, as shown in Figure 9.

Figure 5. You can run a highlighted portion of code in your script if you click the
Run button at the top of the scripts pane. You can run the entire script by clicking
the Source button.

R will run whichever line of code your cursor is on. If you have a whole section
highlighted, R will run the highlighted code. Alternatively, you can run the entire
script by clicking the Source button. Don’t like clicking buttons? You can use
Control + Return as a shortcut for the Run button. On Macs, that would be
Command + Return.

Extract function:
RStudio comes with a tool that can help you build functions. To use it, highlight

the lines of code in your R script that you want to turn into a function. Then click
Code > Extract Function in the menu bar. RStudio will ask you for a function
name to use and then wrap you code in a function call. It will scan the code for
undefined variables and use these as arguments. You may want to double-check
RStudio’s work. It assumes that your code is correct, so if it does something
surprising, you may have a problem in your code.

In this lecture, you will learn how to use R to
store data sets in your computer’s memory and
how to retrieve and manipulate data once it’s
there.

R Objects

R Objects
In this lecture, you’ll use R to assemble a deck of 52 playing
cards.
you’ll build the equivalent of an Excel spreadsheet from scratch. When you are
finished, your deck of cards will look something
like this:
face suit value
king spades 13
queen spades 12
jack spades 11
ten spades 10
nine spades 9
eight spades 8
...

We’ll start with the very basics. The simplest
type of object in R is an atomic vector. They
are very simple, and they do show up
everywhere. If you look closely enough, you’ll
see that most structures in R are built from
atomic vectors

Atomic Vectors

An atomic vector is just a simple vector of data. In fact, you’ve already made an
atomic vector, your die object.

You can make an atomic vector by grouping some values of data together with c:

> die <- c(1,2,3,4,5,6)
> die
[1] 1 2 3 4 5 6
> is.vector(die)
[1] TRUE
>

is.vector tests whether an object is an atomic vector. It returns TRUE if the
object is an atomic vector and FALSE otherwise.

You can also make an atomic vector with just one value. R saves single values as
an atomic vector of length 1:

> five <- 5
> five
[1] 5
> is.vector(five)
[1] TRUE
> length(five)
[1] 1
> length(die)
[1] 6

length
length returns the length of an atomic vector.

To create your card deck, you will need to use different types of atomic
vectors to save different types of information (text and numbers).

You can do this by using some simple conventions when you enter your data. For example, you
can create an integer vector by including a capital L with your input. You can create a character
vector by surrounding your input in quotation marks:

If you’d like to make atomic vectors that have more than one element in them,
you can combine an element with the c function

> int <- 1L
> text <- "ace"

> int <- c(1L, 5L)
> text <- c("ace", "hearts")

You may wonder why R uses multiple types of vectors. R will do math
with atomic vectors that contain numbers, but not with atomic vectors
that contain character strings:

Get ready to say hello to the six
types of atomic vectors in R.

R has five basic or ‘atomic’ classes of objects.
Wait, what is an object ?

Everything you see or create in R is an object.
A vector, matrix, data frame, even a variable is
an object. R treats it that way. So, R has 6
basic classes of objects. This includes:

1. Doubles
2. Integers.
3. Text (or string) values are called Characters.
4. Boolean values (TRUE or FALSE) are called Logicals.
5. Complex
6. Raw.

Note the quotation marks is indicate as a character for example
"some text”.

Each atomic vector stores its values as a one-dimensional vector, and
each atomic vector can only store one type of data. You can save
different types of data in R by using different types of atomic vectors.

Exercise (6):
Change the value of the:

my_numeric variable to 42.
my_character variable to "universe". Note that the quotation
marks indicate that "universe" is a character.
my_logical variable to FALSE.

Hint (1): R is case sensitive!

When you added 5 + "six", you got an error due to a
mismatch in data types!
You can avoid such embarrassing situations by checking the
data type of a variable beforehand. You can do this with the
class() function, as the code on the right shows.

What's that data type?

Exercise (7):
Complete the code in the
editor and also print out the
classes of my_character and
my_logical.

Doubles
A double vector stores regular numbers. The numbers can be positive or
negative, large or small, and have digits to the right of the decimal place
or not.

> die <- c(1,2,3,4,5,6)
> die
[1] 1 2 3 4 5 6
>

you can also ask R what type of object an object is with typeof.

> typeof(die)
[1] "double"
>

Integers
Integer vectors store integers, numbers that can be written without a
decimal component. As a data scientist, you won’t use the integer type
very often because you can save integers as a double object.
You can specifically create an integer in R by typing a number followed
by an uppercase L. For example:

> int <- c(-1L, 2L, 4L)
> int
[1] -1 2 4
> typeof(int)
[1] "integer"
>

Note that R won’t save a number as
an integer unless you include the L.

Important hint: You can avoid floating-point errors by avoiding
decimals and only using integers as shown below:

Why would you save your data as an integer instead of a
double?

> sqrt(2)^2-2
[1] 4.440892e-16

Characters
A character vector stores small pieces of text. You can create a character vector
in R by typing a character or string of characters surrounded by quotes:

> text <- c("Hello", "World")
> text
[1] "Hello" "World"
> typeof(text)
[1] "character"
> typeof("Hello")
[1] "character"
>

The individual elements of a character vector are known as strings.

Exercise
Can you spot the difference between a
character string and a number? Here’s a
test:
Which of these are character strings and
which are numbers? 1, "1", "one".

Anything surrounded by quotes in R will be treated as a character
string—no matter what appears between the quotes

Logicals
Logical vectors store TRUEs and FALSEs, R’s form of Boolean data.
Logicals are very helpful for doing things like comparisons:

Any time you type TRUE or FALSE in capital letters (without quotation
marks), R will treat your input as logical data. R also assumes that T and
F are shorthand for TRUE and FALSE:

> 3 > 4
[1] FALSE
>

> logic <- c(TRUE, FALSE, TRUE)
> logic
[1] TRUE FALSE TRUE
> typeof(logic)
[1] "logical"
> typeof(F)
[1] "logical"
>

Complex and Raw
Doubles, integers, characters, and logicals are the most common types
of atomic vectors in R, but R also recognizes two more types: complex
and raw
Complex vectors store complex numbers. To create a complex vector,
add an imaginary term to a number with i:

> comp <- c(1+1i, 1+2i, 1+3i)
> comp
[1] 1+1i 1+2i 1+3i
>
> typeof(comp)
[1] "complex"
>

You can make an empty raw vector of length n with raw(n). See the help
page of raw for more options when working with this type of data:

> raw(3)
[1] 00 00 00
> typeof(raw(3))
[1] "raw"
>

Exercise
Create an atomic vector that stores just the face names
of the cards in a royal flush, for example, the ace of
spades, king of spades, queen of spades, jack of spades,
and ten of spades. The face name of the ace of spades
would be “ace,” and “spades” is the suit.

Which type of vector will you use to save the names?

A character vector is the most appropriate type of atomic vector in
which to save card names. You can create one with the c function if
you surround each name with quotation marks:

> hand <- c("ace", "king", "queen", "jack", "ten")
> hand
[1] "ace" "king" "queen" "jack" "ten"
> typeof(hand)
[1] "character"
>

This creates a one-dimensional group of card names.

Data Types

Generally, while doing programming in any programming language, you need to use various
variables to store various information. Variables are nothing but reserved memory locations
to store values. This means that, when you create a variable you reserve some space in
memory.

You may like to store information of various data types like character, wide character, integer,
floating point, double floating point, Boolean etc. Based on the data type of a variable, the
operating system allocates memory and decides what can be stored in the reserved memory.

There are many types of R-objects

1. Vectors
2. Lists
3. Matrices
4. Arrays
5. Factors
6. Data Frames

1. Vectors

> class(qt)
"character"

> qt <- c("Time", 24, "October", TRUE, 3.33) #character
> ab <- c(TRUE, 24) #numeric
> cd <- c(2.5, "May") #character

Vector: As mentioned above, a vector contains object of same class. But, you
can mix objects of different classes too. When objects of different classes are
mixed in a list, coercion occurs. This effect causes the objects of different types
to ‘convert’ into one class. For example:

To check the class of any object, use class(“vector name”) function.

To convert the class of a vector, you can use as. command.

> bar <- 0:5
> class(bar)
> "integer"
> as.numeric(bar)
> class(bar)
> "numeric"
> as.character(bar)
> class(bar)
> "character"

Similarly, you can change the class of any vector. But, you should pay
attention here. If you try to convert a “character” vector to “numeric” ,
NAs will be introduced. Hence, you should be careful to use this
command.

Do you still remember what you have learned in the first
section? Assign the value "Go!" to the variable vegas.
Remember: R is case sensitive!

Vectors are one-dimension arrays that can hold numeric data,
character data, or logical data. In other words, a vector is a
simple tool to store data. For example, you can store your daily
gains and losses in the trading.

In R, you create a vector with the combine function c(). You
place the vector elements separated by a comma between the
parentheses. For example:

Create a vector

numeric_vector <- c(1, 2, 3)
character_vector <- c("a", "b", "c")

Hint: Once you have
created these
vectors in R, you can
use them to do
calculations.

Exercise (1): Complete the code such that boolean_vector
contains the three elements: TRUE, FALSE and TRUE (in that
order).

Naming a vector
As a data analyst, it is important to have a clear view on the data that
you are using. Understanding what each element refers to is therefore
essential.

In the previous exercise, we created a vector with your winnings over
the week. Each vector element refers to a day of the week but it is
hard to tell which element belongs to which day. It would be nice if
you could show that in the vector itself.

You can give a name to the elements of a vector with the names()
function. Have a look at this example:

some_vector <- c("John Doe", "poker player")
names(some_vector) <- c("Name", "Profession")

This code first creates a vector some_vector and then gives the
two elements a name. The first element is assigned the name
Name, while the second element is labeled Profession. Printing
the contents to the console yields following output:

Name Profession
"John Doe" "poker player"

In R programming, the very basic data types are the R-objects called vectors which hold elements
of different classes

When you want to create vector with more than one element, you should use c() function which means
to combine the elements into a vector.

Example:

Create a vector.
apple <- c('red','green',"yellow")
print(apple)
Get the class of the vector.
print(class(apple))

When we execute the above code, it produces the following result −
[1] "red" "green" "yellow"
[1] "character"

2. List

Creating a list
Let us create our first list! To construct a list you use the function list():

my_list <- list(comp1, comp2 ...)

The arguments to the list function are the list components. Remember, these
components can be matrices, vectors, other lists, …

Example1: Lists
A list is an R-object which can contain many different types of elements
inside it like vectors, functions and even another list inside it.

Create a list.
list1 <- list(c(2,5,3),21.3, sin)
Print the list.
print(list1)

When we execute the above code, it produces the following result −
[[1]]
[1] 2 5 3
[[2]]
[1] 21.3
[[3]] function (x) .Primitive("sin")

Exercise (2): Construct a list, named my_list, that contains the variables
my_vector, my_matrix and my_df as list components.

1. # Vector with numerics from 1 up to 10
2. my_vector <- 1:10
3.
4. # Matrix with numerics from 1 up to 9
5. my_matrix <- matrix(1:9, ncol = 3)
6.
7. # First 10 elements of the built-in data frame mtcars
8. my_df <- mtcars[1:10,]
9.
10. # Construct list with these different elements:
11. my_list <-

Creating a named list
Well done, you're on a roll!

Just like on your to-do list, you want to avoid not knowing or remembering what
the components of your list stand for. That is why you should give names to them:

my_list <- list(name1 = your_comp1,
name2 = your_comp2)

This creates a list with components that are named name1, name2, and so on. If
you want to name your lists after you've created them, you can use the names()
function as you did with vectors. The following commands are fully equivalent to
the assignment above:

my_list <- list(your_comp1, your_comp2)
names(my_list) <- c("name1", "name2")

Exercise (3):
• Change the code of the previous exercise (see editor) by adding names to the

components. Use for my_vector the name vec, for my_matrix the name mat
and for my_df the name df.

• Print out my_list so you can inspect the output.

1. # Vector with numerics from 1 up to 10
2. my_vector <- 1:10
3.
4. # Matrix with numerics from 1 up to 9
5. my_matrix <- matrix(1:9, ncol = 3)
6.
7. # First 10 elements of the built-in data frame mtcars
8. my_df <- mtcars[1:10,]
9.
10. # Adapt list() call to give the components names
11. my_list <- list(my_vector, my_matrix, my_df)
12.
13. # Print out my_list

Selecting elements from a list
our list will often be built out of numerous elements and components. Therefore, getting a single
element, multiple elements, or a component out of it is not always straightforward
One way to select a component is using the numbered position of that component. For example,
to "grab" the first component of shining_list you type
shining_list[[1]]
A quick way to check this out is typing it in the console. Important to remember: to select
elements from vectors, you use single square brackets: []. Don't mix them up!
You can also refer to the names of the components, with [[]] or with the $ sign. Both will select
the data frame representing the reviews:
shining_list[["reviews"]]
shining_list$reviews
Besides selecting components, you often need to select specific elements out of these
components. For example, with shining_list[[2]][1] you select from the second component,
actors (shining_list[[2]]), the first element ([1]). When you type this in the console, you will see
the answer is Jack Nicholson.

3. Matrices

What's a matrix?
In R, a matrix is a collection of elements of the same data type (numeric, character, or
logical) arranged into a fixed number of rows and columns. Since you are only working
with rows and columns, a matrix is called two-dimensional.
You can construct a matrix in R with the matrix() function. Consider the following
example:
matrix(1:9, byrow = TRUE, nrow = 3)

In the matrix() function:
The first argument is the collection of elements that R will arrange into the rows and
columns of the matrix. Here, we use 1:9 which is a shortcut for c(1, 2, 3, 4, 5, 6, 7, 8,
9).The argument byrow indicates that the matrix is filled by the rows. If we want the
matrix to be filled by the columns, we just place byrow = FALSE.
The third argument nrow indicates that the matrix should have three rows.

Exercise (1): Construct a matrix with 3 rows containing the numbers 1 up to 9,
filled row-wise.

3.Matrices

A matrix is a two-dimensional rectangular data set. It can
be created using a vector input to the matrix function.

Create a matrix.
M = matrix(c('a','a','b','c','b','a'), nrow = 2, ncol = 3, byrow = TRUE)
print(M)

When we execute the above code, it produces the following result −
[,1] [,2] [,3]
[1,] "a" "a" "b"
[2,] "c" "b" "a"

4. Arrays
While matrices are confined to two dimensions, arrays can be of any number of dimensions. The array function takes a
dim attribute which creates the required number of dimension. In the below example we create an array with two
elements which are 3x3 matrices each.

Create an array.
a <- array(c('green','yellow'),dim = c(3,3,2))
print(a)

[,1] [,2] [,3]
[1,] "green" "yellow" "green"
[2,] "yellow" "green" "yellow"
[3,] "green" "yellow" "green"

When we execute the above code, it produces the following result

3. Factors
Very often, data falls into a limited number of categories. For
example, humans are either male or female. In R, categorical
data is stored in factors. Given the importance of these factors
in data analysis, you should start learning how to create, subset
and compare them now!

What's a factor and why would you use it?
There are two types of categorical variables: a nominal categorical variable and an
ordinal categorical variable.

A nominal variable is a categorical variable without an implied order. This means
that it is impossible to say that 'one is worth more than the other'. For example,
think of the categorical variable animals_vector with the categories "Elephant",
"Giraffe", "Donkey" and "Horse". Here, it is impossible to say that one stands above
or below the other. (Note that some of you might disagree ;-)).

In contrast, ordinal variables do have a natural ordering. Consider for example the
categorical variable temperature_vector with the categories: "Low", "Medium" and
"High". Here it is obvious that "Medium" stands above "Low", and "High" stands
above "Medium".

The term factor refers to a statistical data type used to store categorical variables.
The difference between a categorical variable and a continuous variable is that a
categorical variable can belong to a limited number of categories. A continuous
variable, on the other hand, can correspond to an infinite number of values.

It is important that R knows whether it is dealing with a continuous or a
categorical variable, as the statistical models you will develop in the future treat
both types differently. (You will see later why this is the case.)

A good example of a categorical variable is the variable 'Gender'. A human
individual can either be "Male" or "Female", making abstraction of inter-sexes. So
here "Male" and "Female" are, in a simplified sense, the two values of the
categorical variable "Gender", and every observation can be assigned to either
the value "Male" of "Female".

Exercise (1): Assign to variable theory the value "factors for categorical
variables".

Answer
1 # Assign to the variable theory what this chapter is about!
2 theory <- "factors for categorical variables"

To create factors in R, you make use of the function factor(). First thing that you
have to do is create a vector that contains all the observations that belong to a
limited number of categories. For example, gender_vector contains the sex of 5
different individuals:

gender_vector <- c("Male","Female","Female","Male","Male")

It is clear that there are two categories, or in R-terms 'factor levels', at work here:
"Male" and "Female".

The function factor() will encode the vector as a factor:

factor_gender_vector <- factor(gender_vector)

you use it?

Exercise (2):
• Convert the character vector gender_vector to a factor with factor() and

assign the result to factor_gender_vector
• Print out factor_gender_vector and assert that R prints out the factor levels

below the actual values.

1 # Gender vector
2 gender_vector <- c("Male", "Female", "Female", "Male", "Male")
3
4 # Convert gender_vector to a factor
5 factor_gender_vector <-
6
7 # Print out factor_gender_vector

Exercise (3): Click 'Submit Answer' to check how R constructs and prints nominal
and ordinal variables. Do not worry if you do not understand all the code just yet,
we will get to that.

1. # Animals
2. animals_vector <- c("Elephant", "Giraffe", "Donkey", "Horse")
3. factor_animals_vector <- factor(animals_vector)
4. factor_animals_vector
5.
6. # Temperature
7. temperature_vector <- c("High", "Low", "High","Low", "Medium")
8. factor_temperature_vector <- factor(temperature_vector, order = TRUE, levels = c("Low", "Medium", "High"))
9. factor_temperature_vector

Factor levels
When you first get a data set, you will often notice that it contains factors with specific factor levels. However,
sometimes you will want to change the names of these levels for clarity or other reasons. R allows you to do this
with the function levels():

levels(factor_vector) <- c("name1", "name2",...)
A good illustration is the raw data that is provided to you by a survey. A standard question for every questionnaire
is the gender of the respondent. You remember from the previous question that this is a factor and when
performing the questionnaire on the streets its levels are often coded as "M" and "F".

survey_vector <- c("M", "F", "F", "M", "M")
Next, when you want to start your data analysis, your main concern is to keep a nice overview of all the variables
and what they mean. At that point, you will often want to change the factor levels to "Male" and "Female"
instead of "M" and "F" to make your life easier.

Watch out: the order with which you assign the levels is important. If you type levels(factor_survey_vector), you'll
see that it outputs [1] "F" "M". If you don't specify the levels of the factor when creating the vector, R will
automatically assign them alphabetically. To correctly map "F" to "Female" and "M" to "Male", the levels should
be set to c("Female", "Male"), in this order order.

Exercise (4):
• Check out the code that builds a factor vector from survey_vector. You should

use factor_survey_vector in the next instruction.
• Change the factor levels of factor_survey_vector to c("Female", "Male"). Mind

the order of the vector elements here.
1. # Code to build factor_survey_vector
2. survey_vector <- c("M", "F", "F", "M", "M")
3. factor_survey_vector <- factor(survey_vector)
4.
5. # Specify the levels of factor_survey_vector
6. levels(factor_survey_vector) <-
7.
8. factor_survey_vector

Summarizing a factor

After finishing this Part, one of your favorite functions in R will be summary().
This will give you a quick overview of the contents of a variable:

summary(my_var)

Going back to our survey, you would like to know how many "Male" responses
you have in your study, and how many "Female" responses. The summary()
function gives you the answer to this question.

Exercise (5): Ask a summary() of the survey_vector and factor_survey_vector.
Interpret the results of both vectors. Are they both equally useful in this case?

1. # Build factor_survey_vector with clean levels
2. survey_vector <- c("M", "F", "F", "M", "M")
3. factor_survey_vector <- factor(survey_vector)
4. levels(factor_survey_vector) <- c("Female", "Male")
5. factor_survey_vector
6.
7. # Generate summary for survey_vector
8.
9.
10. # Generate summary for factor_survey_vector

More example about Factors
Factors are the r-objects which are created using a vector. It stores the vector along with the distinct values of the
elements in the vector as labels. The labels are always character irrespective of whether it is numeric or
character or Boolean etc. in the input vector. They are useful in statistical modelling.

Factors are created using the factor() function. The nlevels functions gives the count of levels.

Create a vector.
apple_colors <- c('green','green','yellow','red','red','red','green')

Create a factor object.
factor_apple <- factor(apple_colors)

Print the factor.
print(factor_apple)
print(nlevels(factor_apple))

When we execute the above code, it produces the following result

[1] green green yellow red red red green
Levels: green red yellow
[1] 3

4.Data frames
Most data sets you will be working with will be stored as data
frames. By the end of this lecture focused on R basics, you will
be able to create a data frame, select interesting parts of a data
frame and order a data frame according to certain variables.

What's a data frame?

Data Frame: This is the most commonly used member of data
types family. It is used to store tabular data. It is different
from matrix. In a matrix, every element must have same class.
But, in a data frame, you can put list of vectors containing
different classes. This means, every column of a data frame
acts like a list. Every time you will read data in R, it will be
stored in the form of a data frame. Hence, it is important to
understand the majorly used commands on data frame:

What's a data frame?

> df <- data.frame(name = c("ash","jane","paul","mark"),
score = c(67,56,87,91))
> df
name score
1 ash 67
2 jane 56
3 paul 87
4 mark 91

> dim(df)
[1] 4 2

Simple example:

All the elements that you put in a matrix should be of the same type. Back then, your
data set on Star Wars only contained numeric elements.
When doing a market research survey, however, you often have questions such as:
• 'Are your married?' or 'yes/no' questions (logical)
• 'How old are you?' (numeric)
• 'What is your opinion on this product?' or other 'open-ended' questions (character)
• ...
The output, namely the respondents' answers to the questions formulated above, is a
data set of different data types. You will often find yourself working with data sets that
contain different data types instead of only one.

A data frame has the variables of a data set as columns and the observations as rows.
This will be a familiar concept for those coming from different statistical software
packages such as SAS or SPSS.

What's a data frame?

Exercise (6): The data from the built-in example data frame mtcars will be printed
to the console.

1. # Print out built-in R data frame
2. mtcars

Console Output

Quick, have a look at your data setWow, that is a lot of cars!
Working with large data sets is not uncommon in data analysis. When you work
with (extremely) large data sets and data frames, your first task as a data
analyst is to develop a clear understanding of its structure and main elements.
Therefore, it is often useful to show only a small part of the entire data set.
So how to do this in R? Well, the function head() enables you to show the first
observations of a data frame. Similarly, the function tail() prints out the last
observations in your data set.
Both head() and tail() print a top line called the 'header', which contains the
names of the different variables in your data set.

Exercise (1):Call head() on the mtcars data set to have a look at the
header and the first observations.

1. # Call head() on mtcars
2. head(mtcars)

Have a look at the structure
Another method that is often used to get a rapid overview of your data is the
function str(). The function str() shows you the structure of your data set. For a
data frame it tells you:
• The total number of observations (e.g. 32 car types)
• The total number of variables (e.g. 11 car features)
• A full list of the variables names (e.g. mpg, cyl ...)
• The data type of each variable (e.g. num)
• The first observations
Applying the str() function will often be the first thing that you do when receiving
a new data set or data frame. It is a great way to get more insight in your data set
before diving into the real analysis.
Exercise (2):Investigate the structure of mtcars. Make sure that you see the
same numbers, variables and data types as mentioned above.

Investigate the structure of mtcars
str(mtcars)

Creating a data frame
Since using built-in data sets is not even half the fun of creating your own data sets, the rest of this section
is based on your personally developed data set. Put your jet pack on because it is time for some space
exploration!

As a first goal, you want to construct a data frame that describes the main characteristics of eight planets
in our solar system. According to your good friend Buzz, the main features of a planet are:

• The type of planet (Terrestrial or Gas Giant).
• The planet's diameter relative to the diameter of the Earth.
• The planet's rotation across the sun relative to that of the Earth.
• If the planet has rings or not (TRUE or FALSE).

After doing some high-quality research on Wikipedia, you feel confident enough to create the necessary
vectors: name, type, diameter, rotation and rings; these vectors have already been coded up on the right.
The first element in each of these vectors correspond to the first observation.

You construct a data frame with the data.frame() function. As arguments, you pass the vectors from before:
they will become the different columns of your data frame. Because every column has the same length, the
vectors you pass should also have the same length. But don't forget that it is possible (and likely) that they
contain different types of data.

Exercise (1): Use the function data.frame() to construct a data frame. Pass the
vectors name, type, diameter, rotation and rings as arguments to data.frame(), in
this order. Call the resulting data frame planets_df.

1. # Definition of vectors
2. planets <- c("Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune")
3. type <- c("Terrestrial planet", "Terrestrial planet", "Terrestrial planet",
4. "Terrestrial planet", "Gas giant", "Gas giant", "Gas giant", "Gas giant")
5. diameter <- c(0.382, 0.949, 1, 0.532, 11.209, 9.449, 4.007, 3.883)
6. rotation <- c(58.64, -243.02, 1, 1.03, 0.41, 0.43, -0.72, 0.67)
7. rings <- c(FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE)

8. # Create a data frame: planets_df
9. planets_df <- data.frame(planets, type, diameter, rotation, rings)

The planets_df data frame should have 8 observations and 5 variables. It has been
made available in the workspace, so you can directly use it.

Exercise (4):Use str() to investigate the structure of the new planets_df variable.

1. # Check the structure of planets_df
2. str(planets_df)

Selection of data frame elements
Similar to vectors and matrices, you select elements from a data frame with
the help of square brackets []. By using a comma, you can indicate what to
select from the rows and the columns respectively. For example:

• my_df[1,2] selects the value at the first row and select element in my_df.
• my_df[1:3,2:4] selects rows 1, 2, 3 and columns 2, 3, 4 in my_df.

Sometimes you want to select all elements of a row or column. For example,
my_df[1,] selects all elements of the first row. Let us now apply this
technique on planets_df!

Exercise (4):From planets_df, select the diameter of
Mercury: this is the value at the first row and the third
column. Simply print out the result.
From planets_df, select all data on Mars (the fourth row).
Simply print out the result.

Data frames are tabular data objects. Unlike a matrix in data frame each column can contain
different modes of data. The first column can be numeric while the second column can be
character and third column can be logical. It is a list of vectors of equal length.

Data Frames are created using the data.frame() function.

More example of Data Frames

Create the data frame.
BMI <- data.frame(

gender = c("Male", "Male", "Female"),
height = c(152, 171.5, 165),
weight = c(81,93, 78),
Age = c(42,38,26))

print(BMI)

When we execute the above code, it produces the following result
1 Male 152.0 81 42
2 Male 171.5 93 38
3 Female 165.0 78 26

Summary
You can save data in R with five different objects, which let you
store different types of values in different types of relationships,
as in Figure below. Of these objects, data frames are by far the
most useful for data science. Data frames store one of the most
common forms of data used in data science, tabular data.

Figure 1. R’s most
common data structures
are vectors, matrices,
arrays, lists, and data
frames.

Functions

A function is a set of statements organized together to
perform a specific task. R has a large number of in-built
functions and the user can create their own functions.

An R function is created by using the keyword function. The basic syntax of an R function definition is as follows

function_name <- function(arg_1, arg_2, ...) { Function body }

Function Components
The different parts of a function are
• Function Name − This is the actual name of the function. It is stored in R

environment as an object with this name.
• Arguments − An argument is a placeholder. When a function is invoked, you

pass a value to the argument. Arguments are optional; that is, a function
may contain no arguments. Also arguments can have default values.

• Function Body − The function body contains a collection of statements that
defines what the function does.

• Return Value − The return value of a function is the last expression in the
function body to be evaluated.

Create a sequence of numbers from 32 to 44.
print(seq(32,44))

Find mean of numbers from 25 to 82.
print(mean(25:82))

Find sum of numbers frm 41 to 68.
print(sum(41:68))

> # Create a sequence of numbers from 32 to 44.
> print(seq(32,44))
[1] 32 33 34 35 36 37 38 39 40 41 42 43 44

>
> # Find mean of numbers from 25 to 82.
> print(mean(25:82))
[1] 53.5
>
> # Find sum of numbers frm 41 to 68.
> print(sum(41:68))
[1] 1526
>

When we execute the above code, it produces the following result

Your first script
Fire up RStudio (or whatever IDE you use) and type the following two
lines into the text editor. Then execute them, which can be done using a
keyboard shortcut https://support.rstudio.com/hc/en-
us/articles/200711853-Keyboard-Shortcuts — Ctrl+Enter (Windows) or
Command+Enter (mac) in RStudio.

https://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts

Applied Basic Econometrics using R:
Simple Linear Regression

Simple Linear Regression

Regression is to build a function of independent variables (also known
as predictors whose value is gathered through experiments) to predict
a dependent variable (also called response whose value is derived
from the predictor variable). For example, banks assess the risk of
home-loan applicants based on their age, income, expenses,
occupation, number of dependents, total credit limit, etc.

Regression analysis is a very widely used statistical tool to establish a
relationship model between two variables.

The aim of linear regression is to model a continuous variable
Y as a mathematical function of one or more X variable(s), so
that we can use this regression model to predict the Y when
only the X is known. This mathematical equation can be
generalized as follows:

Y = β1 + β2X + ϵ
where, β1 is the intercept and β2 is the slope. Collectively, they
are called regression coefficients. ϵ is the error term, the part of
Y the regression model is unable to explain.

Y = β1 + β2X + ϵ

For this analysis, we will use the cars dataset that comes with R by
default. cars is a standard built-in dataset, that makes it convenient to
demonstrate linear regression in a simple and easy to understand
fashion.

Example Problem

You can access this dataset simply by typing in cars in your R console.
You will find that it consists of 50 observations(rows) and 2 variables
(columns) – dist and speed. Lets print out the first six observations
here..

> head(cars) # display the first 6
observations

speed dist
1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
6 9 10

Cars Dataset

The aim of this exercise is to build a simple regression model that we can use to
predict Distance (dist) by establishing a statistically significant linear relationship
with Speed (speed). But before jumping in to the syntax, lets try to understand
these variables graphically. Typically, for each of the independent variables
(predictors), the following plots are drawn to visualize the following behavior:

1. Scatter plot: Visualize the linear relationship between the predictor and
response

2. Box plot: To spot any outlier observations in the variable. Having outliers in
your predictor can drastically affect the predictions as they can easily affect
the direction/slope of the line of best fit.

3. Density plot: To see the distribution of the predictor variable. Ideally, a close
to normal distribution (a bell shaped curve), without being skewed to the left
or right is preferred. Let us see how to make each one of them.

Graphical Analysis:

Scatter Plot
Scatter plots can help visualize any linear relationships
between the dependent (response) variable and independent
(predictor) variables. Ideally, if you are having multiple
predictor variables, a scatter plot is drawn for each one of
them against the response, along with the line of best as seen
below.

library(ggplot2)
ggplot(cars, aes(x= speed , y=dist))+ geom_point()+ stat_smooth()

The scatter plot along with the smoothing line above suggests a linearly increasing relationship between the ‘dist’
and ‘speed’ variables. This is a good thing, because, one of the underlying assumptions in linear regression is that
the relationship between the response and predictor variables is linear and additive.

Generally, any datapoint that lies outside the 1.5 *
interquartile-range (1.5 * IQR) is considered an outlier, where,
IQR is calculated as the distance between the 25th percentile
and 75th percentile values for that variable.

BoxPlot – Check for outliers

library(ggplot2)
ggplot(cars, aes(x= speed , y=dist)) + geom_boxplot()

Outlier rows = 120

Correlation
Correlation is a statistical measure that suggests the level of linear dependence between two
variables, that occur in pair – just like what we have here in speed and dist. Correlation can
take values between -1 to +1. If we observe for every instance where speed increases, the
distance also increases along with it, then there is a high positive correlation between them
and therefore the correlation between them will be closer to 1. The opposite is true for an
inverse relationship, in which case, the correlation between the variables will be close to -1.
A value closer to 0 suggests a weak relationship between the variables. A low correlation (-0.2
< x < 0.2) probably suggests that much of variation of the response variable (Y) is unexplained
by the predictor (X), in which case, we should probably look for better explanatory variables.
We can measure this with the correlation coefficient

> with(cars, cor(speed, dist))
[1] 0.8068949
>

Build Linear Model

Regression is a special case of a linear model. The
R function for fitting a linear mode is lm() and we
can use it like this. The function coef() returns the
estimated coefficients of the fitted linear model.

> fit = lm(dist ~ speed, data = cars)
> coef(fit)
(Intercept) speed
-17.579095 3.932409
>

The lm() function takes in two main arguments, namely: 1.
Formula 2. Data. The data is typically a data.frame and the
formula is a object of class formula. But the most common
convention is to write out the formula directly in place of the
argument as written below.

Now that we have built the linear model, we also have
established the relationship between the predictor
(independent variables) and response (dependent
variables) in the form of a mathematical formula for
Distance (dist) as a function for speed. For the above
output, you can notice the ‘Coefficients’ part having two
components: Intercept: -17.579, speed: 3.932 These are
also called the beta coefficients. In other words,

dist = Intercept + (β ∗ speed)
=> dist = −17.579 + 3.932∗speed

Linear Regression Diagnostics
Now the linear model is built and we have a formula
that we can use to predict the dist value if a
corresponding speed is known. Is this enough to actually
use this model? NO! Before using a regression model,
you have to ensure that it is statistically significant. How
do you ensure this? Lets begin by printing the summary
statistics for linearMod.

> summary(fit)

> summary(fit)

Call:
lm(formula = dist ~ speed, data = cars)

Residuals:
Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

We can add the line to the plot using
geom_smooth(). The default behavior is to add a
locally smooth regression line with a shaded gray
area to represent pointwise 95 percent confidence
regions for the true mean dis as a function of
speed. We first show this plot and then the options
to override the default and just plot the simple
regression line.

The scatter plot along with the smoothing line above suggests a linearly increasing relationship between the ‘dist’
and ‘speed’ variables. This is a good thing, because, one of the underlying assumptions in linear regression is that
the relationship between the response and predictor variables is linear and additive.

library(ggplot2)
ggplot(cars, aes(x= speed , y=dist))+ geom_point()+ stat_smooth()

ggplot(cars, aes(x=speed,y=dist)) + geom_point() + geom_smooth(method="lm",
se=FALSE)

geom smooth: method="auto" and size of largest group is <1000, so
using loess. Use 'method = x' to change the smoothing method.

