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Abstract 
In this paper the survival function was estimated by estimating two parameters 
of the two-parameter Lindley distribution using the maximum likelihood 
method as well as the Bayesian method, and the difficulty of obtaining the 
normalizing constant for the posterior distribution function, therefore the 
difficulty of obtaining a Bayesian estimator for this function and an approximate 
method was resorted to represented by the Laplace approximation method. 
Then the behavior of these estimates was studied in terms of having the 
properties of good estimator, where a simulation study was conducted at 
different sample sizes (50, 100, 150) and for different cases that differ by 
changing the values of two parameters of the Lindley distribution. It was found 
that the estimates of the two methods have the property of consistency 
because the value of the associated MSE decreases with the large sample size 
and the simulation showed the superiority of the Bayesian method over the 
method of maximum likelihood in estimating the survival function at all sample 
sizes and for all cases. 

Keywords: Lindley Distribution, Survival Function, Laplace Approximation. 

1. Introduction 
Reliability theory and Survival Analysis have become very important statistical 
methods since the beginning of the twentieth century. These two theories are 
based on non-negative probability distributions that are often right-skewed. 
The most common distributions used in this field are the Exponential 
Distribution, Gamma Distribution, Weibull Distribution, Rayleigh Distribution, 
Log-Normal Distribution and many other probability distributions [8]. In 
addition to the mixed distributions, which we mean that a part of the sample 
members follows a certain distribution and the rest own another distribution, 
the most common mixed distributions are the t-Student Distribution, the 
Laplace Distribution, the Lomax Distribution and the Lindley Distribution [14]. 
The Lindley distribution is a mixture of the Exponential distribution and the 
Gamma distribution, with different ratios for each. Although this distribution 
was presented by Lindley in 1958 [13], interest in it appeared recently for nearly 
a decade and a half, so its statistical properties were studied and its parameters 
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were estimated by many researchers such as Ghitany et al. [9], and Jodrá [12]. 
The idea of the Lindley distribution is summarized as a distribution consisting of 
mixing two continuous distributions (the first is the Exponential distribution and 
the second is Gamma) with different weights. where its general form will be: 

𝑓(𝑥; 𝜃) = 𝑤𝑓1(𝑥; 𝜃) + (1 − 𝑤)𝑓2(𝑥; 𝜃)                                         . . . (1) 

Where: 

𝑓1(𝑥; 𝜃) = 𝜃𝑒−𝜃𝑥        ;       𝑓2(𝑥; 𝜃) = 𝜃2𝑥𝑒−𝜃𝑥                        . . . (2) 

So, the resulting function is: 

𝑓(𝑥; 𝜃) = 𝑤𝜃𝑒−𝜃𝑥 + (1 − 𝑤)𝜃2𝑥𝑒−𝜃𝑥                                      . . . (3)  

Lindley [13] used the weight 𝑤 = 𝜃 (𝜃 + 1)⁄  so the probability density function 
will be: 

𝑓(𝑥; 𝜃) =
𝜃2

𝜃 + 1
(1 + 𝑥)𝑒−𝜃𝑥                       , 𝑥 > 0 , 𝜃 ≥ 0       . . . (4) 

The Lindley distribution consists of one parameter, and this makes it less flexible 
compared to distributions that contain a larger number of parameters, so many 
generalizations have appeared for this distribution, and these generalizations 
have a different number of parameters, some with two parameters, the other 
with three, and some reaching five parameters [16]. A two-parameter Lindley 
distribution was proposed by Shanker et al. [15], in addition to studying its 
properties and estimating its parameters using the maximum likelihood 
method, and its parameters were estimated by the Bayes method for the fuzzy 
data by Al-Bayati [2] using Lindley approximation method. In this paper, the 
Bayesian estimation will be done using the Laplace approximation method, and 
then the Bayesian estimates will be compared with the maximum likelihood 
estimates using the MSE criterion.  
The paper was divided into several sections. The first section included the 
introduction and the second section a study of the two-parameter Lindley 
distribution in terms of clarifying the mechanism of obtaining it in addition to 
important functions such as the probability density function, the cumulative 
distribution function and the survival function, while the third section was 
devoted to the maximum likelihood estimators, and the fourth section to the 
Bayesian estimators using Laplace approximation, while the fifth section 
included the simulation and comparison between the two methods, and the 
sixth section included the conclusions. 

2. Two-Parameter Lindley Distribution 
The two-parameter Lindley distribution was presented by (Shanker, Sharma & 
Shanker) in 2013 [15], The researchers used the weight 𝑤 = 𝜃 (𝜃 + 𝛼)⁄  with 
the same distributions used in the one-parameter Lindley distribution, as 
follows:   
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𝑓(𝑥; 𝛼, 𝜃) =
𝜃

𝜃 + 𝛼
𝜃𝑒−𝜃𝑥 +

𝛼

𝜃 + 𝛼
𝜃2𝑥𝑒−𝜃𝑥                                  . . . (5) 

Thus, the probability density function (p.d.f) for a random variable that follows 
a two-parameter Lindley distribution is: 

𝑓(𝑥; 𝛼, 𝜃) =
𝜃2

𝜃 + 𝛼
(1 + 𝛼𝑥)𝑒−𝜃𝑥   , 𝑥 > 0 , 𝜃 ≥ 0, 𝛼 > −𝜃      … (6)            

This function will be plotted at different values for 𝛼 parameter and with the 
same values for 𝜃 parameter shown in Figure (2-1) and as in the following figure: 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. The p.d.f of a two-parameter Lindley distribution at different values of the 
parameters. 

The cumulative distribution function (c.d.f) for a two-parameter Lindley 
distribution can be obtained as follows: 

𝐹(𝑥; 𝜃, 𝛼) = ∫ 𝑓(𝑡)𝑑𝑡

𝑥

0

= ∫
𝜃2

𝜃 + 𝛼
(1 + 𝛼𝑡)𝑒−𝜃𝑡𝑑𝑡

𝑥

−∞

=
𝜃2

𝜃 + 𝛼
∫(1 + 𝛼𝑡)𝑒−𝜃𝑡𝑑𝑡

𝑥

−∞

 

Solving the integral, the c.d.f will be: 

𝐹(𝑥; 𝜃, 𝛼) = 1 − [
𝜃 + 𝛼 + 𝛼𝜃𝑥

𝜃 + 𝛼
] 𝑒−𝜃𝑥     𝑥 > 0 , 𝜃 ≥ 0, 𝛼 > −𝜃      … (7) 

The following figure shows the cumulative distribution function at different 
values of the parameters. 

 
Figure 2. The c.d.f of a two-parameter Lindley distribution at different values of the 

parameters. 
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The Survival Function is defined as the probability of an organism surviving until 
time t, and it can be obtained through the cumulative distribution function as 
follows: 

𝑆(𝑥; 𝜃, 𝛼) = 1 − 𝐹(𝑥; 𝜃, 𝛼) = 1 − {1 − [
𝜃 + 𝛼 + 𝛼𝜃𝑥

𝜃 + 𝛼
] 𝑒−𝜃𝑥} 

∴ 𝑆(𝑥; 𝜃, 𝛼) = [
𝜃 + 𝛼 + 𝛼𝜃𝑥

𝜃 + 𝛼
] 𝑒−𝜃𝑥  , 𝑥 > 0 , 𝜃 ≥ 0, 𝛼 > −𝜃         … (8) 

The following figure shows the survival function at different values of the 
parameters. 

 

 

 

 

 

 

 

 
 

Figure 3. The survival function of a two-parameter Lindley distribution at different 
values of the parameters. 

3. Maximum Likelihood Estimators 

The idea of the maximum likelihood method is summarized in finding the value 
that makes the logarithm of the possibility function as large as possible and the 
likelihood function for a two-parameter Lindley distribution that is as follows 
[15]: 

𝐿(𝜃, 𝛼) = ∏[
𝜃2

𝜃 + 𝛼
(1 + 𝛼𝑥𝑖)𝑒

−𝜃𝑥𝑖]

𝑛

𝑖=1

= (
𝜃2

𝜃 + 𝛼
)

𝑛

∏(1 + 𝛼𝑥𝑖)

𝑛

𝑖=1

𝑒−𝑛𝜃𝑥         … (9) 

Taking the natural logarithm, we obtained: 

ℓ(𝜃, 𝛼) = 𝑙𝑛[𝐿(𝜃, 𝛼)] = 2𝑛𝑙𝑛𝜃 − 𝑛𝑙𝑛(𝜃 + 𝛼) + ∑𝑙𝑛(1 + 𝛼𝑥𝑖)

𝑛

𝑖=1

− 𝑛𝜃𝑥  … (10) 

Now, the logarithm of the likelihood function is derived for the two parameters 
of the distribution, as follows: 
𝜕ℓ(𝜃, 𝛼)

𝜕𝜃
=

2𝑛

�̂�
−

𝑛

�̂� + �̂�
− 𝑛𝑥 = 0                                                 … (11) 

𝜕ℓ(𝜃, 𝛼)

𝜕𝛼
=

−𝑛

�̂� + �̂�
+ ∑

𝑥𝑖

1 + �̂�𝑥𝑖

𝑛

𝑖=1

= 0                                            … (12) 
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Then, the second derivative is found, as follows: 
𝜕2ℓ(𝜃, 𝛼)

𝜕𝜃2
=

−2𝑛

�̂�2
+

𝑛

(�̂� + �̂�)
2                                                         … (13) 

𝜕2ℓ(𝜃, 𝛼)

𝜕𝛼2
=

𝑛

(�̂� + �̂�)
2 − ∑

𝑥𝑖
2

(1 + �̂�𝑥𝑖)
2

𝑛

𝑖=1

                                     … (14) 

𝜕2ℓ(𝜃, 𝛼)

𝜕𝜃𝜕𝛼
=

𝜕2ℓ(𝜃, 𝛼)

𝜕𝛼𝜕𝜃
=

𝑛

(�̂� + �̂�)
2                                               … (15) 

Thus, the matrix of the second derivatives is as follows: 

𝐻𝑀𝐿 =

[
 
 
 

𝜕2ℓ

𝜕𝜃2

𝜕2ℓ

𝜕𝜃𝜕𝛼
𝜕2ℓ

𝜕𝛼𝜕𝜃

𝜕2ℓ

𝜕𝛼2 ]
 
 
 

                                                                   … (16) 

After obtaining the estimates of 𝛼 and 𝜃 by solving equations (11) and (12) using 
the Newton-Raphson method, they are substituted into the 𝐻𝑀𝐿 matrix. If this 
matrix is Negative Definite, then the estimates are maximum likelihood 
estimates. 
The estimated survival function can be obtained by the method of maximum 
likelihood by substituting the estimates obtained from solving equations (11) 
and (12) into the survival function for a two-parameter Lindley distribution, 
which was previously defined in equation (8) as follows: 

�̂�𝑀𝐿 = [
�̂�𝑀𝐿 + �̂�𝑀𝐿 + �̂�𝑀𝐿�̂�𝑀𝐿𝑥

�̂�𝑀𝐿 + �̂�𝑀𝐿

] 𝑒−�̂�𝑀𝐿𝑥                              … (17) 

4. Bayesian Estimators 
In the classical estimation method, the parameter is considered fixed although 
it is unknown, but in the Bayesian method it is considered random and has a 
probability distribution. This process takes place by adopting a probability 
distribution for the parameter, let it be λ, that contains all the information about 
this parameter from previous experience, that is, that has nothing to do with 
the data called the prior distribution and a probability distribution that contains 
the previous information as well as the data, which is called the posterior 
distribution, as follows [10]:  

𝑝(𝜆|𝑥) =
𝑝(𝑥, 𝜆)

𝑝(𝑥)
=

𝑝(𝑥, 𝜆)

∫ 𝑝(𝑥, 𝜆)𝑑𝜆
                                                … (18) 

Where: 
𝑥: Observations vector. 

𝑝(𝜆|𝑥): The posterior distribution for λ. 

𝑝(𝑥): The probability function related to the data. 

𝑝(𝑥, 𝜆): The joint distribution between λ and observations. 

Now, by substituting 𝑝(𝑥, 𝜆) with its equal to the conditional probability, we 

get: 
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𝑝(𝜆|𝑥) =
𝑝(𝑥|𝜆)𝑝(𝜆)

∫𝑝(𝑥|𝜆)𝑝(𝜆)𝑑𝜆
                                                            … (19) 

Where: 
𝑝(𝑥|𝜆): The possible function, which we usually symbolize L(λ). 

𝑝(𝜆): The prior distribution for λ. 
The previous equation called the Bayes Theorem, and it is clear from it that the posterior 
probability is the outcome of merging the previous information with the sample 
information [3]. 

The Bayes estimator is obtained using loss functions, which is usually 

symbolized by the symbol 𝐿(�̂�, 𝜆), where the expectation is found for these 
functions, which is called the risk function, and as follows [1]: 

𝑅(�̂�, 𝜆) = 𝐸(𝐿(�̂�, 𝜆)) = ∫𝐿(�̂�, 𝜆)𝑝(𝜆|𝑥)𝑑𝜆                          . . . (20) 

The squared error loss function will be used in this research, which can be 
known as follows [6]: 
𝐿(�̂�, 𝜆) = (𝜆 − �̂�)2                                                                        . . . (21) 

For a two-parameter Lindley distribution, the number of parameters is two 𝛼 
and 𝜃 instead of one 𝜆, and the likelihood function for this distribution has been 
defined in equation (9), and the prior joint distribution of these parameters was 
obtained after assuming the following:  
𝜃~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏), 𝛼|𝜃~𝑇𝑤𝑜𝑃𝐸𝑥𝑝(−𝜃, 𝑐) 
That is, 𝜃 follows the Gamma distribution and 𝛼 conditioned by the variable 𝜃 
follows a two-parameter exponential distribution, and the reason for this is that 
the space of 𝜃 is devoid of any dependence on 𝛼 while the space of 𝛼 depends 
on 𝜃 (𝛼 > −𝜃), that is, the probability density function for each of them can be 
written as follows: 

𝑝(𝜃) =
𝑏𝑎

𝛤(𝑎)
𝜃𝑎−1𝑒−𝑏𝜃                                                                   … (22) 

𝑝(𝛼|𝜃) = 𝑐𝑒−𝑐(𝛼+𝜃)                                                                        … (23) 
Thus, the prior joint distribution is as follows: 

𝑝(𝜃, 𝛼) = 𝑝(𝛼|𝜃)𝑝(𝜃) =
𝑐𝑏𝑎

𝛤(𝑎)
𝜃𝑎−1𝑒−[(𝑏+𝑐)𝜃+𝑐𝛼]                 … (24) 

By applying this equation as well as the likelihood function defined in equation 
(9) in equation (19), we get the joint posterior probability as follows: 

𝑝(𝜃, 𝛼|𝑥) =
(

𝜃2

𝜃 + 𝛼
)

𝑛

∏ (1 + 𝛼𝑥𝑖)
𝑛
𝑖=1 𝑒−𝑛𝜃𝑥𝜃𝑎−1𝑒−((𝑏+𝑐)𝜃+𝑐𝛼)

∫∫(
𝜃2

𝜃 + 𝛼
)

𝑛

∏ (1 + 𝛼𝑥𝑖)
𝑛
𝑖=1 𝑒−𝑛𝜃𝑥𝜃𝑎−1𝑒−((𝑏+𝑐)𝜃+𝑐𝛼)𝑑𝜃 𝑑𝛼

… (25) 

The estimator of any function can be obtained in terms of the two parameters, 
let it be, u, using the squared loss function as follows: 

�̂� = 𝐸[𝑢(𝜃, 𝛼)] =
∫∫𝑢(𝜃, 𝛼) (

𝜃2

𝜃 + 𝛼
)
𝑛

∏ (1 + 𝛼𝑥𝑖)
𝑛
𝑖=1 𝑒−𝑛𝜃𝑥𝜃𝑎−1𝑒−((𝑏+𝑐)𝜃+𝑐𝛼)𝑑𝜃 𝑑𝛼

∫∫ (
𝜃2

𝜃 + 𝛼
)
𝑛

∏ (1 + 𝛼𝑥𝑖)
𝑛
𝑖=1 𝑒−𝑛𝜃𝑥𝜃𝑎−1𝑒−((𝑏+𝑐)𝜃+𝑐𝛼)𝑑𝜃 𝑑𝛼

…(26) 
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Because of the inability to obtain an algebraic formula (Closed Form), 
approximate methods are resorted to. There are many of these methods useful 
for this purpose, the most important of which are Lindley's approximation and 
Laplace's approximation. 
The researchers (Tierney & Kadane) introduced an approximation in 1986 to 
obtain the product of the integration in equation (26) based on the work of 
Laplace in 1774 in a research paper entitled (Accurate approximations for 
posterior moments and marginal densities). Its purpose is to find the 
expectation in cases that are difficult to find [17]. This approximation is called 
the Laplace Approximation in relation to the method based on the Laplace 
method for finding the integral [5]. Or the Tierney-Kadane Approximation 
related to the aforementioned researchers who introduced this method [4]. 
According to the Laplace approximation method, the expectation for the 
posterior distribution is found when this distribution includes an integral in the 
denominator that cannot be reduced to a simplified form. If the posterior 
expectation is as mentioned in equation (26), then we can formulate it as 
follows [11]: 

𝐼(𝑥) = 𝐸[𝑢(𝜆|𝑥)] =
∫ 𝑒(𝑙𝑛[𝑢(𝜆)]+ℓ+𝜌) 𝑑𝜆

∫ 𝑒(ℓ+𝜌)𝑑𝜆
                              … (27) 

Where: 
𝜌: The natural logarithm of the prior joint distribution of the parameters. 
ℓ: The natural logarithm of the likelihood function. 

Assuming that: 

ℎ(𝜆) =
1

𝑛
(ℓ + 𝜌)                                                                                    . . . (28) 

ℎ∗(𝜆) =
1

𝑛
𝑙𝑛 (𝑢(𝜆)) + ℎ(𝜆)                                                               . . . (29) 

Then equation (27) becomes: 

𝐼(𝑥) = 𝐸[𝑢(𝜆|𝑥)] =
∫ 𝑒𝑛ℎ∗(𝜆) 𝑑𝜆

∫ 𝑒𝑛ℎ(𝜆)𝑑𝜆
                                                      … (30) 

Thus, Laplace's estimation for this equation is as follows [17]: 

𝐼(𝑥) = �̂�[𝑢(𝜆|𝑥)] = [
|𝛴∗|

|𝛴|
]

1
2⁄

𝑒𝑥𝑝 {𝑛 (ℎ∗(�̂�∗) − ℎ(�̂�))}             … (31) 

Where |. | denotes the determinant of the matrix, �̂�∗ and �̂� are estimated 

vectors that maximize functions ℎ∗(𝜆) and ℎ(𝜆) respectively, and 𝛴∗ and 𝛴 are 

the inverse of the negative Hessian matrix for ℎ∗(𝜆) and ℎ(𝜆) at �̂�∗ and �̂� 

respectively. 
In the case of two parameters, as is the case in this research, the equations (28), 
(29) and (30) are written as follows [7]: 

ℎ(𝜃, 𝛼) =
1

𝑛
(ℓ + 𝜌)                                                                                       . . . (32) 

ℎ∗(𝜃, 𝛼) =
1

𝑛
𝑙𝑛(𝑢(𝜃, 𝛼)) + ℎ(𝜃, 𝛼)                                                          . . . (33) 
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𝐼(𝑥) = �̂�[𝑢(𝜃, 𝛼|𝑥)] = (
|𝛴∗|

|𝛴|
)

1
2⁄

𝑒𝑥𝑝 {𝑛 (ℎ∗(�̂�∗, �̂�∗) − ℎ(�̂�, �̂�))}   … (34) 

Where (𝜃∗, �̂�∗) and (𝜃, �̂�) maximize functions ℎ∗(𝜃, 𝛼) and ℎ(𝜃, 𝛼) respectively, 
and 𝛴∗ and 𝛴 are the inverse of the negative Hessian matrix for ℎ∗(𝜃, 𝛼) and 

ℎ(𝜃, 𝛼) at (𝜃∗, �̂�∗) and (𝜃, �̂�)  respectively, so that both 𝛴∗ and 𝛴 can be defined 
as follows: 

𝛴 = [−𝐻ℎ]−1|𝜃=�̂�
𝛼=�̂�

  =

[
 
 
 −

𝜕2ℎ

𝜕𝜃2
−

𝜕2ℎ

𝜕𝜃𝜕𝛼

−
𝜕2ℎ

𝜕𝜃𝜕𝛼
−

𝜕2ℎ

𝜕𝛼2 ]
 
 
 
−1

|
|

𝜃=�̂�
𝛼=�̂�

                     … (35) 

𝛴∗ = [−𝐻ℎ∗]−1|𝜃=�̂�∗

𝛼=�̂�∗

=

[
 
 
 −

𝜕2ℎ∗

𝜕𝜃2
−

𝜕2ℎ∗

𝜕𝜃𝜕𝛼

−
𝜕2ℎ∗

𝜕𝜃𝜕𝛼
−

𝜕2ℎ∗

𝜕𝛼2 ]
 
 
 
−1

|
|

𝜃=�̂�∗

𝛼=�̂�∗

                  … (36) 

As for the case of the two-parameter Lindley distribution, the researchers 
derived in this research the values that maximize the two previously mentioned 
functions in equations (32) and (33) in addition to the Hessian matrices for both 
functions, taking into account that equation (32) does not change with the 
change of the u function and thus it will be the same for all cases, and the 
maximum values for it will be found once, unlike equation (33) which will be 
maximized by three different cases, and the following is the finding of the 
maximum points for the function ℎ(𝜃, 𝛼): 

ℎ(𝜃, 𝛼) =
1

𝑛
{2𝑛𝑙𝑛𝜃 − 𝑛𝑙𝑛(𝜃 + 𝛼) + ∑𝑙𝑛(1 + 𝛼𝑥𝑖)

𝑛

𝑖=1

− 𝑛𝜃𝑥 + (𝑎 − 1) 𝑙𝑛 𝜃 − [(𝑏 + 𝑐)𝜃 + 𝑐𝛼]}        … (37) 

𝜕ℎ(𝜃, 𝛼)

𝜕𝜃
=

1

𝑛
{
2𝑛 + 𝑎 − 1

𝜃
−

𝑛

𝜃 + �̂�
− 𝑛𝑥 − (𝑏 + 𝑐)} = 0       … (38) 

𝜕ℎ(𝜃, 𝛼)

𝜕𝛼
=

1

𝑛
{−

𝑛

𝜃 + �̂�
+ ∑

𝑥𝑖

1 + �̂�𝑥𝑖

𝑛

𝑖=1

− 𝑐} = 0                        … (39) 

The values 𝜃 and �̂� are obtained after solving equations (38) and (39). As for the 
Hessian matrix, we obtain it by differentiating equations (38) and (39) again, as 
follows: 

𝜕2ℎ(𝜃, 𝛼)

𝜕𝜃2
=

1

𝑛
{−

2𝑛 + 𝑎 − 1

�̂�2
+

𝑛

(�̂� + �̂�)
2}                                … (40) 

𝜕2ℎ(𝜃, 𝛼)

𝜕𝛼2
=

1

𝑛
{

𝑛

(�̂� + �̂�)
2 − ∑

𝑥𝑖
2

(1 + �̂�𝑥𝑖)
2

𝑛

𝑖=1

}                              … (41) 

𝜕2ℎ(𝜃, 𝛼)

𝜕𝜃𝜕𝛼
=

𝜕2ℎ(𝜃, 𝛼)

𝜕𝛼𝜕𝜃
=

1

(�̂� + �̂�)
2                                               … (42) 

Thus, the matrix of the second derivatives is as follows: 
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𝐻ℎ =

[
 
 
 
𝜕2ℎ

𝜕𝜃2

𝜕2ℎ

𝜕𝜃𝜕𝛼
𝜕2ℎ

𝜕𝛼𝜕𝜃

𝜕2ℎ

𝜕𝛼2 ]
 
 
 

                                                                       … (43) 

As for equation (33), its maximization varies according to the u function, 

but here we will find general equations and then substitute for special 

cases, as follows: 

ℎ∗(𝜃, 𝛼) =
1

𝑛
𝑙𝑛(𝑢(𝜃, 𝛼)) + ℎ(𝜃, 𝛼)                                               . . . (44) 

𝜕ℎ∗(𝜃, 𝛼)

𝜕𝜃
=

1

𝑛
{

𝑢𝜃

𝑢(𝜃, 𝛼)
|
𝜃=�̂�∗

𝛼=�̂�∗

+
2𝑛 + 𝑎 − 1

𝜃
−

𝑛

𝜃 + �̂�
− 𝑛𝑥 − (𝑏 + 𝑐)} = 0         … (45) 

𝜕ℎ∗(𝜃, 𝛼)

𝜕𝛼
=

1

𝑛
{

𝑢𝛼

𝑢(𝜃, 𝛼)
|
𝜃=�̂�∗

𝛼=�̂�∗

−
𝑛

�̂� + �̂�
+ ∑

𝑥𝑖

1 + �̂�𝑥𝑖

𝑛

𝑖=1

− 𝑐} = 0                … (46) 

The values of 𝜃∗ and �̂�∗ are obtained after solving equations (45) and (46). As 
for the Hessian matrix, we obtain it by differentiating equations (45) and (46) 
again, as follows: 

𝜕2ℎ∗(𝜃, 𝛼)

𝜕𝜃2
=

1

𝑛
{

𝑢𝜃𝜃

𝑢(𝜃, 𝛼)
|
𝜃=�̂�∗

𝛼=�̂�∗

−
[𝑢𝜃]2

[𝑢(𝜃∗, �̂�∗)]
2|

𝜃=�̂�∗

𝛼=�̂�∗

−
2𝑛 + 𝑎 − 1

𝜃∗
2 +

𝑛

(𝜃∗ + �̂�∗)
2}             … (47) 

𝜕2ℎ∗(𝜃, 𝛼)

𝜕𝛼2 =
1

𝑛
{

𝑢𝛼𝛼

𝑢(𝜃, 𝛼)
|
𝜃=�̂�∗

𝛼=�̂�∗

−
[𝑢𝛼]2

[𝑢(𝜃∗, �̂�∗)]
2|

𝜃=�̂�∗

𝛼=�̂�∗

+
𝑛

(𝜃∗ + �̂�∗)
2 − ∑

𝑥𝑖
2

(1 + �̂�∗𝑥𝑖)
2

𝑛

𝑖=1

}     … (48) 

𝜕2ℎ∗(𝜃, 𝛼)

𝜕𝜃𝜕𝛼
=

𝜕2ℎ∗(𝜃, 𝛼)

𝜕𝛼𝜕𝜃
=

1

𝑛
{

𝑢𝜃𝛼

𝑢(𝜃, 𝛼)
|
𝜃=�̂�∗

𝛼=�̂�∗

−
𝑢𝜃𝑢𝛼

[𝑢(𝜃, 𝛼)]2
|
𝜃=�̂�∗

𝛼=�̂�∗

+
𝑛

(𝜃∗ + �̂�∗)
2}                  … (49) 

Thus, the matrix of the second derivatives is as follows: 

𝐻ℎ∗ =

[
 
 
 
𝜕2ℎ∗

𝜕𝜃2

𝜕2ℎ∗

𝜕𝜃𝜕𝛼
𝜕2ℎ∗

𝜕𝛼𝜕𝜃

𝜕2ℎ∗

𝜕𝛼2 ]
 
 
 

                                                                       … (50) 

As special cases of the function u, we take the following three cases and 
substitute ℎ(𝜃, 𝛼) and ℎ∗(𝜃, 𝛼) into equation (34) after taking into account u 
and its accompanying derivatives for each case: 

Bayesian Estimator of 𝜽: in this case 𝑢(𝜃, 𝛼) = 𝜃, then: 

𝑢𝜃 = 1, 𝑢𝛼 = 𝑢𝜃𝛼 = 𝑢𝛼𝜃 = 𝑢𝜃𝜃 = 𝑢𝛼𝛼 = 0 

Bayesian Estimator of 𝜶: in this case 𝑢(𝜃, 𝛼) = 𝛼, then: 

𝑢𝛼 = 1, 𝑢𝜃 = 𝑢𝜃𝛼 = 𝑢𝛼𝜃 = 𝑢𝜃𝜃 = 𝑢𝛼𝛼 = 0 
Bayesian Estimator of the survival function: in this case 

 𝑢(𝜃, 𝛼) = [
𝜃+𝛼+𝛼𝜃𝑡

𝜃+𝛼
] 𝑒−𝜃𝑡, then: 

𝑢𝜃 = −𝜃𝑡 [
𝜃 + 2𝛼 + 𝛼𝜃𝑡 + 𝛼2𝑡

(𝜃 + 𝛼)2
] 𝑒−𝜃𝑡                                                                  … (51) 
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𝑢𝛼 =
𝜃2𝑡

(𝜃 + 𝛼)2
𝑒−𝜃𝑡                                                                                                  … (52) 

 𝑢𝜃𝛼 = 𝑢𝛼𝜃 = −𝜃𝑥 [
𝜃2𝑡 + 𝛼𝜃𝑡 − 2𝛼

(𝜃 + 𝛼)3
] 𝑒−𝜃𝑥                                                      … (53) 

 𝑢𝜃𝜃 = [
(2𝛼2𝜃2 + 𝛼𝜃3 + 𝛼3𝜃)𝑡3 + (𝜃2 + 3𝛼𝜃2 + 𝛼2𝜃 − 𝛼3)𝑡2 − 2𝛼2𝑡

(𝜃 + 𝛼)3
] 𝑒−𝜃𝑡  … (54) 

𝑢𝛼𝛼 = −
2𝜃2𝑥

(𝜃 + 𝛼)3
𝑒−𝜃𝑡                                                                                         … (55) 

Where the Bayesian estimator of the survival function is obtained after 
substituting equations (51) to (55) in equation (31). 

5. Simulation 
A comprehensive simulation was carried out to generate data distributes as 
two-parameter Lindley distribution, and based on these data, the parameters 
and survival function were estimated by the maximum likelihood and Bayesian 
methods by Laplace' approximation, and then the two methods were compared 
using the MSE criterion. The data was generated by the quantile function of the 
two-parameter Lindley distribution, which is obtained as follows: 

𝐹(𝑥) = 1 − [
𝜃 + 𝛼 + 𝛼𝜃𝑥

𝜃 + 𝛼
] 𝑒−𝜃𝑥 = 𝑢 

⇒ 1 − 𝑢 = [
𝜃 + 𝛼 + 𝛼𝜃𝑥

𝜃 + 𝛼
] 𝑒−𝜃𝑥 

⇒ (𝜃 + 𝛼)(1 − 𝑢) = [𝜃 + 𝛼 + 𝛼𝜃𝑥]𝑒−𝜃𝑥  

⇒
(𝜃 + 𝛼)(1 − 𝑢)

𝛼
= [

𝜃 + 𝛼

𝛼
+ 𝜃𝑥] 𝑒−𝜃𝑥  

⇒
(𝜃 + 𝛼)(1 − 𝑢)𝑒−

(𝜃+𝛼)
𝛼

𝛼
= [

𝜃 + 𝛼

𝛼
+ 𝜃𝑥] 𝑒

−(𝜃𝑥+
(𝜃+𝛼)

𝛼
)
 

⇒ −
(𝜃 + 𝛼)(1 − 𝑢)𝑒−

(𝜃+𝛼)
𝛼

𝛼
= − [

𝜃 + 𝛼

𝛼
+ 𝜃𝑥] 𝑒

−(𝜃𝑥+
(𝜃+𝛼)

𝛼
)
 

⇒ 𝑊−1 [−
(𝜃 + 𝛼)(1 − 𝑢)𝑒−

(𝜃+𝛼)
𝛼

𝛼
] = − [

𝜃 + 𝛼

𝛼
+ 𝜃𝑥] 

⇒ −𝑊−1 [−
(𝜃 + 𝛼)(1 − 𝑢)𝑒−

(𝜃+𝛼)
𝛼

𝛼
] = [

𝜃 + 𝛼

𝛼
+ 𝜃𝑥] 

⇒ −𝑊−1 [−
(𝜃 + 𝛼)(1 − 𝑢)𝑒−

(𝜃+𝛼)
𝛼

𝛼
] − [

𝜃 + 𝛼

𝛼
] = 𝜃𝑥 

⇒ 𝑥 = −
1

𝜃
𝑊−1 [−

(𝜃 + 𝛼)(1 − 𝑢)𝑒−
(𝜃+𝛼)

𝛼

𝛼
] − [

𝜃 + 𝛼

𝜃𝛼
]          … (55) 

Where 𝑊−1(. ) is the Lambert W Function with a negative branch. 



Journal of Statistical Sciences                              Edition No.:20, September 2023 

96 
 

The generation process was performed for four different cases as shown in 
Table 2, and for each case different sample sizes (50, 100, 150) were used. The 
experiment was repeated 1000 for each of the four cases, after which the 
estimation process was carried out using the maximum likelihood and Bayesian 
methods, and their comparison was done using the MSE criteria. All of these 
operations took place in the R environment. 

Table 1. Different cases of simulation. 

Cases 𝜽 𝜶 

Case 1 0.5 0.5 

Case 2 0.5 2 

Case 3 1.5 0.5 

Case 4 1.5 2 

The following tables show the simulation results for the parameters: 

Table 2. The simulated MSEs values for 𝜃 = 0.5; 𝛼 = 0.5.  
Sample Size Parameters MLE Bayes Best 

n=50 𝜃 = 0.5 0.50786 0.51654 

Bayes 𝛼 = 0.5 0.52712 0.51706 

MSE 0.00671 0.00653 

n=100 𝜃 = 0.5 0.50475 0.50916 

Bayes 𝛼 = 0.5 0.52593 0.52129 

MSE 0.00392 0.00372 

n=150 𝜃 = 0.5 0.50476 0.50779 

Bayes 𝛼 = 0.5 0.52534 0.52265 

MSE 0.00290 0.00276 

Table 3. The simulated MSEs values for 𝜃 = 0.5; 𝛼 = 2.  
Sample Size Parameters MLE Bayes Best 

n=50 𝜃 = 0.5 0.5099 0.57521 

Bayes 𝛼 = 2 2.19657 2.08677 

MSE 0.06138 0.03087 

n=100 𝜃 = 0.5 0.50538 0.53706 

Bayes 𝛼 = 2 2.16786 2.0951 

MSE 0.04702 0.02408 

n=150 𝜃 = 0.5 0.5075 0.50918 

Bayes 𝛼 = 2 2.14852 2.11255 

MSE 0.03768 0.02099 

Table 4. The simulated MSEs values for 𝜃 = 1.5; 𝛼 = 0.5.  
Sample Size Parameters MLE Bayes Best 

n=50 𝜃 = 1.5 1.5374 1.53958 

Bayes 𝛼 = 0.5 0.57628 0.54821 

MSE 0.04759 0.04757 

n=100 𝜃 = 1.5 1.53795 1.55446 

Bayes 𝛼 = 0.5 0.57571 0.5622 

MSE 0.02855 0.02811 

n=150 𝜃 = 1.5 1.53313 1.54472 

Bayes 𝛼 = 0.5 0.58082 0.57253 

MSE 0.02258 0.0221 
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Table 5. The simulated MSEs values for 𝜃 = 1.5; 𝛼 = 2.  
Sample Size Parameters MLE Bayes Best 

n=50 𝜃 = 1.5 1.52705 1.53752 

Bayes 𝛼 = 2 2.11779 2.00048 

MSE 0.07729 0.07394 

n=100 𝜃 = 1.5 1.51477 1.57137 

Bayes 𝛼 = 2 2.10936 2.05143 

MSE 0.04811 0.04132 

n=150 𝜃 = 1.5 1.51474 1.55194 

Bayes 𝛼 = 2 2.10363 2.06154 

MSE 0.03746 0.03233 

The following tables show the simulation results for the survival function: 

Table 6. The simulated MSEs values of survival function for 𝜃 = 0.5; 𝛼 = 0.5.  

Table 7. The simulated MSEs values of survival function for 𝜃 = 0.5; 𝛼 = 2. 

 

Sample Size t Real MLE Bayes Best 

n=50 0.05 0.9875 0.98742 0.98698 

Bayes 

0.5 0.87615 0.87539 0.87152 

1.5 0.6495 0.64821 0.6397 

3.5 0.32583 0.32619 0.31637 

5 0.18469 0.18645 0.1785 

MSE 0.00899 0.00886 

n=100 0.05 0.9875 0.98757 0.98735 

Bayes 

0.5 0.87615 0.87659 0.87467 

1.5 0.6495 0.65017 0.64592 

3.5 0.32583 0.32679 0.32181 

5 0.18469 0.18589 0.18185 

MSE 0.00442 0.00435 

n=150 0.05 0.9875 0.98758 0.98744 

Bayes 

0.5 0.87615 0.87666 0.87539 

1.5 0.6495 0.65004 0.6472 

3.5 0.32583 0.32601 0.32267 

5 0.18469 0.18491 0.18219 

MSE 0.00286 0.00284 

Sample Size t Real MLE Bayes Best 

n=50 0.05 0.99482 0.99491 0.9948 

Bayes 

0.5 0.93456 0.93456 0.9186 

1.5 0.75579 0.75397 0.70765 

3.5 0.41706 0.41608 0.34978 

5 0.24625 0.24795 0.19087 

MSE 0.0229 0.02054 

n=100 0.05 0.99482 0.99497 0.99427 

Bayes 

0.5 0.93456 0.93544 0.92757 

1.5 0.75579 0.75635 0.73328 

3.5 0.41706 0.41754 0.38356 

5 0.24625 0.24758 0.21779 

MSE 0.00632 0.00612 

n=150 0.05 0.99482 0.99492 0.99486 

Bayes 

0.5 0.93456 0.93483 0.92963 

1.5 0.75579 0.75449 0.73901 

3.5 0.41706 0.41422 0.39105 

5 0.24625 0.24421 0.22377 

MSE 0.00463 0.0046 
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Table 8. The simulated MSEs values of survival function for 𝜃 = 1.5; 𝛼 = 0.5. 

 
Table 9. The simulated MSEs values of survival function for 𝜃 = 1.5; 𝛼 = 2.  

We note from all the previous tables that the Bayesian method is better than 
the maximum likelihood method in the four cases and for the three sample 
sizes. The sample. As for the consistency property, the estimates of the two 
methods have this property because the MSE values of these estimates 
decrease with the increase in the sample size. 

6. Conclusions 
We conclude from the above the following: 
1. All estimators of the two methods have a property of consistency. 
2. The priority of the Bayesian method over the maximum likelihood method. 
3. The performance of the two methods converges with increasing the sample 
size. 

Sample Size t Real MLE Bayes Best 

n=50 0.05 0.94514 0.94508 0.94297 

Bayes 

0.5 0.56094 0.56117 0.54933 

1.5 0.16469 0.16649 0.15681 

3.5 0.01213 0.01313 0.01153 

5 0.00159 0.00189 0.00158 

MSE 0.00477 0.00469 

n=100 0.05 0.94514 0.94519 0.94413 

Bayes 

0.5 0.56094 0.56067 0.55468 

1.5 0.16469 0.16418 0.15927 

3.5 0.01213 0.0122 0.01142 

5 0.00159 0.00164 0.0015 

MSE 0.00243 0.00242 

n=150 0.05 0.94514 0.94558 0.94488 

Bayes 

0.5 0.56094 0.56249 0.55846 

1.5 0.16469 0.165 0.16167 

3.5 0.01213 0.01215 0.01163 

5 0.00159 0.00161 0.00151 

MSE 0.00164 0.00162 

Sample Size t Real MLE Bayes Best 

n=50 0.05 0.9675 0.96744 0.9673 

Bayes 

0.5 0.67481 0.6742 0.66101 

1.5 0.24091 0.2429 0.24077 

3.5 0.02099 0.0231 0.01587 

5 0.00292 0.00366 0.00212 

MSE 0.00592 0.00526 

n=100 0.05 0.9675 0.96774 0.96539 

Bayes 

0.5 0.67481 0.67551 0.65562 

1.5 0.24091 0.24203 0.2236 

3.5 0.02099 0.02191 0.01812 

5 0.00292 0.00324 0.00246 

MSE 0.00230 0.00226 

n=150 0.05 0.9675 0.96774 0.96717 

Bayes 

0.5 0.67481 0.67527 0.67397 

1.5 0.24091 0.24105 0.22871 

3.5 0.02099 0.02141 0.01888 

5 0.00292 0.0031 0.00258 

MSE 0.00206 0.00202 
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